Herschel-PACS spectroscopic diagnostics of local ULIRGs: Conditions and kinematics in Markarian 231

Astronomy and Astrophysics 518:2 (2010)

Authors:

J Fischer, E Sturm, E González-Alfonso, J Graciá-Carpio, S Hailey-Dunsheath, A Poglitsch, A Contursi, D Lutz, R Genzel, A Sternberg, A Verma, L Tacconi

Abstract:

In this first paper on the results of our Herschel PACS survey of local ultra luminous infrared galaxies (ULIRGs), as part of our SHINING survey of local galaxies, we present far-infrared spectroscopy of Mrk 231, the most luminous of the local ULIRGs, and a type 1 broad absorption line AGN. For the first time in a ULIRG, all observed far-infrared fine-structure lines in the PACS range were detected and all were found to be deficient relative to the far infrared luminosity by 1-2 orders of magnitude compared with lower luminosity galaxies. The deficits are similar to those for the mid-infrared lines, with the most deficient lines showing high ionization potentials. Aged starbursts may account for part of the deficits, but partial covering of the highest excitation AGN powered regions may explain the remaining line deficits. A massive molecular outflow, discovered in OH and 18OH, showing outflow velocities out to at least 1400 km s-1, is a unique signature of the clearing out of the molecular disk that formed by dissipative collapse during the merger. The outflow is characterized by extremely high ratios of 18O/16O suggestive of interstellar medium processing by advanced starbursts. © 2010 ESO.

Herschel-PACS spectroscopic diagnostics of local ULIRGs: Conditions and kinematics in Markarian 231

Astronomy and Astrophysics 518:2 (2010)

Authors:

J Fischer, E Sturm, E González-Alfonso, J Graciá-Carpio, S Hailey-Dunsheath, A Poglitsch, A Contursi, D Lutz, R Genzel, A Sternberg, A Verma, L Tacconi

Abstract:

In this first paper on the results of our Herschel PACS survey of local ultra luminous infrared galaxies (ULIRGs), as part of our SHINING survey of local galaxies, we present far-infrared spectroscopy of Mrk 231, the most luminous of the local ULIRGs, and a type 1 broad absorption line AGN. For the first time in a ULIRG, all observed far-infrared fine-structure lines in the PACS range were detected and all were found to be deficient relative to the far infrared luminosity by 1-2 orders of magnitude compared with lower luminosity galaxies. The deficits are similar to those for the mid-infrared lines, with the most deficient lines showing high ionization potentials. Aged starbursts may account for part of the deficits, but partial covering of the highest excitation AGN powered regions may explain the remaining line deficits. A massive molecular outflow, discovered in OH and 18OH, showing outflow velocities out to at least 1400 km s-1, is a unique signature of the clearing out of the molecular disk that formed by dissipative collapse during the merger. The outflow is characterized by extremely high ratios of 18O/16O suggestive of interstellar medium processing by advanced starbursts. © 2010 ESO.

Galaxy Zoo: Bars in Disk Galaxies

ArXiv 1003.0449 (2010)

Authors:

Karen L Masters, Robert C Nichol, Ben Hoyle, Chris Lintott, Steven Bamford, Edward M Edmondson, Lucy Fortson, William C Keel, Kevin Schawinski, Arfon Smith, Daniel Thomas

Abstract:

We present first results from Galaxy Zoo 2, the second phase of the highly successful Galaxy Zoo project (www.galaxyzoo.org). Using a volume-limited sample of 13665 disk galaxies (0.01< z < 0.06 and M_r<-19.38), we study the fraction of galaxies with bars as a function of global galaxy properties like colour, luminosity and bulge prominence. Overall, 29.4+/-0.5% of galaxies in our sample have a bar, in excellent agreement with previous visually classified samples of galaxies (although this overall fraction is lower than measured by automated bar-finding methods). We see a clear increase in the bar fraction with redder (g-r) colours, decreased luminosity and in galaxies with more prominent bulges, to the extent that over half of the red, bulge-dominated, disk galaxies in our sample possess a bar. We see evidence for a colour bi-modality for our sample of disk galaxies, with a "red sequence" that is both bulge and bar-dominated, and a "blue cloud" which has little, or no, evidence for a (classical) bulge or bar. These results are consistent with similar trends for barred galaxies seen recently both locally and at higher redshift, and with early studies using the RC3. We discuss these results in the context of internal (secular) galaxy evolution scenarios and the possible links to the formation of bars and bulges in disk galaxies.

Black hole growth and host galaxy morphology

ArXiv 1002.1488 (2010)

Authors:

Kevin Schawinski, C Megan Urry, Shanil Virani, Paolo Coppi, Steven P Bamford, Ezequiel Treister, Chris J Lintott, Marc Sarzi, William C Keel, Sugata Kaviraj, Carolin N Cardamone, Karen L Masters, Nicholas P Ross, the Galaxy Zoo team

Abstract:

We use data from large surveys of the local Universe (SDSS+Galaxy Zoo) to show that the galaxy-black hole connection is linked to host morphology at a fundamental level. The fraction of early-type galaxies with actively growing black holes, and therefore the AGN duty cycle, declines significantly with increasing black hole mass. Late-type galaxies exhibit the opposite trend: the fraction of actively growing black holes increases with black hole mass.

Galaxy Zoo: Dust in Spirals

ArXiv 1001.1744 (2010)

Authors:

Karen L Masters, Robert C Nichol, Steven Bamford, Moein Mosleh, Chris J Lintott, Dan Andreescu, Edward M Edmondson, William C Keel, Phil Murray, M Jordan Raddick, Kevin Schawinski, Anze Slosar, Alexander S Szalay, Daniel Thomas, Jan Vandenberg

Abstract:

We investigate the effect of dust on spiral galaxies by measuring the inclination-dependence of optical colours for 24,276 well-resolved SDSS galaxies visually classified in Galaxy Zoo. We find clear trends of reddening with inclination which imply a total extinction from face-on to edge-on of 0.7, 0.6, 0.5 and 0.4 magnitudes for the ugri passbands. We split the sample into "bulgy" (early-type) and "disky" (late-type) spirals using the SDSS fracdeV (or f_DeV) parameter and show that the average face-on colour of "bulgy" spirals is redder than the average edge-on colour of "disky" spirals. This shows that the observed optical colour of a spiral galaxy is determined almost equally by the spiral type (via the bulge-disk ratio and stellar populations), and reddening due to dust. We find that both luminosity and spiral type affect the total amount of extinction, with "disky" spirals at M_r ~ -21.5 mags having the most reddening. This decrease of reddening for the most luminous spirals has not been observed before and may be related to their lower levels of recent star formation. We compare our results with the latest dust attenuation models of Tuffs et al. We find that the model reproduces the observed trends reasonably well but overpredicts the amount of u-band attenuation in edge-on galaxies. We end by discussing the effects of dust on large galaxy surveys and emphasize that these effects will become important as we push to higher precision measurements of galaxy properties and their clustering.