Eyeballing the universe
Physics World 21:9 (2008) 27-30
Galaxy Zoo: Morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey
Monthly Notices of the Royal Astronomical Society 389:3 (2008) 1179-1189
Abstract:
In order to understand the formation and subsequent evolution of galaxies one must first distinguish between the two main morphological classes of massive systems: spirals and early-type systems. This paper introduces a project, Galaxy Zoo, which provides visual morphological classifications for nearly one million galaxies, extracted from the Sloan Digital Sky Survey (SDSS). This achievement was made possible by inviting the general public to visually inspect and classify these galaxies via the internet. The project has obtained more than 4 × 107 individual classifications made by ∼10 5 participants. We discuss the motivation and strategy for this project, and detail how the classifications were performed and processed. We find that Galaxy Zoo results are consistent with those for subsets of SDSS galaxies classified by professional astronomers, thus demonstrating that our data provide a robust morphological catalogue. Obtaining morphologies by direct visual inspection avoids introducing biases associated with proxies for morphology such as colour, concentration or structural parameters. In addition, this catalogue can be used to directly compare SDSS morphologies with older data sets. The colour-magnitude diagrams for each morphological class are shown, and we illustrate how these distributions differ from those inferred using colour alone as a proxy for morphology. © 2008 RAS.Integral-field spectroscopy of a Lyman-break galaxy at z = 3.2: Evidence for merging
Astronomy and Astrophysics 479:1 (2008) 67-73
Abstract:
We present spatially-resolved, rest-frame optical spectroscopy of a Lyman-break galaxy (LBG), Q0347-383 C5, obtained with SINFONI on the VLT. This galaxy, among the % brightest LBGs, is only the second LBG observed with an integral-field spectrograph. It was first described by Pettini et al. (2001, ApJ, 554, 981), who obtained WFPC2 F702W imaging and longslit spectroscopy in the -band. We find that the emission line morphology is dominated by two unresolved blobs at a projected distance of 5 kpc with a velocity offset of km s. Velocity dispersions suggest that each blob has a mass of. Unlike Pettini et al. (2001), our spectra are deep enough to detect H, and we derive star-formation rates of yr, and use the H/[OIII] ratio to crudely estimate an oxygen abundance , which is in the range typically observed for LBGs. We compare the properties of Q0347-383 C5 with what is found for other LBGs, including the gravitationally lensed "arc+core" galaxy (Nesvadba et al. 2006, ApJ, 650, 661), and discuss possible scenarios for the nature of the source, namely disk rotation, a starburst-driven wind, disk fragmentation, and merging of two LBGs. We favor the merging interpretation for bright, extended LBGs like Q0347-383 C5, in broad agreement with predicted merger rates from hierarchical models. © 2008 ESO.Molecular signature of star formation at high redshifts
Astrophysics and Space Science 313:1-3 (2008) 327-330
Abstract:
In recent years there has been much debate, both observational and theoretical, about the nature of star formation at high redshift. In particular, there seems to be strong evidence of a greatly enhanced star formation rate early in the Universe's evolution. Simulations investigating the nature of the first stars indicate that these were large, with masses in excess of 100 solar masses. By the use of a chemical model, we have simulated the molecular signature of massive star formation for a range of redshifts, using different input models of metallicity in the early Universe. We find that, as long as the number of massive stars exceeds that in the Milky Way by factor of at least 1000, then several 'hot-core' like molecules should have detectable emission. Although we predict that such signatures should already be partly detectable with current instruments (e.g. with the VLA), facilities such as ALMA will make this kind of observation possible at the highest redshifts. © 2007 Springer Science+Business Media B.V.The physical properties of LBGs at z>5: outflows and the "pre-enrichment problem"
Pathways through an Eclectic Universe Astronomical Society of the Pacific ASP Conference Series: 390 (2008) 431-434