Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Prof Michael Barnes

Professor in Theoretical Physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Theoretical astrophysics and plasma physics at RPC
michael.barnes@physics.ox.ac.uk
Telephone: 01865 (2)73960
Rudolf Peierls Centre for Theoretical Physics, room 50.10
  • About
  • Publications

A Hybrid Gyrokinetic Ion and Isothermal Electron Fluid Code for Astrophysical Plasma

(2017)

Authors:

Y Kawazura, M Barnes
More details from the publisher

Overview of recent physics results from MAST

Nuclear Fusion Institute of Physics 57:10 (2017) 102007

Authors:

A Kirk, J Adamek, RJ Akers, S Allan, L Appel, F Arese Lucini, Michael Barnes, T Barrett, N Ben Ayed, W Boeglin, J Bradley, PK Browning, J Brunner, P Cahyna, S Cardnell, M Carr, F Casson, M Cecconello, C Challis, IT Chapman, S Chapman, J Chorley, S Conroy, N Conway, WA Cooper

Abstract:

New results from MAST are presented that focus on validating models in order to extrapolate to future devices. Measurements during start-up experiments have shown how the bulk ion temperature rise scales with the square of the reconnecting field. During the current ramp-up, models are not able to correctly predict the current diffusion. Experiments have been performed looking at edge and core turbulence. At the edge, detailed studies have revealed how filament characteristics are responsible for determining the near and far scrape off layer density profiles. In the core the intrinsic rotation and electron scale turbulence have been measured. The role that the fast ion gradient has on redistributing fast ions through fishbone modes has led to a redesign of the neutral beam injector on MAST Upgrade. In H-mode the turbulence at the pedestal top has been shown to be consistent with being due to electron temperature gradient modes. A reconnection process appears to occur during edge localized modes (ELMs) and the number of filaments released determines the power profile at the divertor. Resonant magnetic perturbations can mitigate ELMs provided the edge peeling response is maximised and the core kink response minimised. The mitigation of intrinsic error fields with toroidal mode number n > 1 has been shown to be important for plasma performance.
More details from the publisher
Details from ORA
More details
Details from ArXiV

On the effect of neoclassical flows on intrinsic momentum in ASDEX Upgrade Ohmic L-mode plasmas

Nuclear Fusion IOP Publishing 57:4 (2017) 046008

Authors:

WA Hornsby, C Angioni, E Fable, P Manas, R McDermott, AG Peeters, M Barnes, F Parra
More details from the publisher

Collisionality scaling of the electron heat flux in ETG turbulence

Plasma Physics and Controlled Fusion IOP Publishing 59:5 (2017) 1-25

Authors:

GJ Colyer, AA Schekochihin, FI Parra, CM Roach, MA Barnes, Y-C Ghim, W Dorland

Abstract:

In electrostatic simulations of MAST plasma at electron-gyroradius scales, using the local flux-tube gyrokinetic code GS2 with adiabatic ions, we find that the long-time saturated electron heat flux (the level most relevant to energy transport) decreases as the electron collisionality decreases. At early simulation times, the heat flux "quasi-saturates" without any strong dependence on collisionality, and with the turbulence dominated by streamer-like radially elongated structures. However, the zonal fluctuation component continues to grow slowly until much later times, eventually leading to a new saturated state dominated by zonal modes and with the heat flux proportional to the collision rate, in approximate agreement with the experimentally observed collisionality scaling of the energy confinement in MAST. We outline an explanation of this effect based on a model of ETG turbulence dominated by zonal-nonzonal interactions and on an analytically derived scaling of the zonal-mode damping rate with the electron-ion collisionality. Improved energy confinement with decreasing collisionality is favourable towards the performance of future, hotter devices.
More details from the publisher
Details from ORA
More details
Details from ArXiV
More details

Optimized up-down asymmetry to drive fast intrinsic rotation in tokamaks

(2017)

Authors:

Justin Ball, Felix I Parra, Matt Landreman, Michael Barnes
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • Current page 19
  • Page 20
  • Page 21
  • Page 22
  • Page 23
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet