Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Prof Michael Barnes

Professor in Theoretical Physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Theoretical astrophysics and plasma physics at RPC
michael.barnes@physics.ox.ac.uk
Telephone: 01865 (2)73960
Rudolf Peierls Centre for Theoretical Physics, room 50.10
  • About
  • Publications

Turbulent momentum pinch of diamagnetic flows in a tokamak

(2013)

Authors:

Jungpyo Lee, Felix I Parra, Michael Barnes
More details from the publisher

Electron flow driven instability in finite beta plasmas

40th EPS Conference on Plasma Physics, EPS 2013 2 (2013) 1098-1101

Authors:

I Pusztai, PJ Catto, FI Parra, M Barnes

Freely decaying turbulence in two-dimensional electrostatic gyrokinetics

Physics of Plasmas AIP Publishing 19:12 (2012) 122305

Authors:

T Tatsuno, GG Plunk, M Barnes, W Dorland, GG Howes, R Numata
More details from the publisher

Zero-turbulence manifold in a toroidal plasma.

Physical review letters 109:26 (2012) 265001

Authors:

EG Highcock, AA Schekochihin, SC Cowley, M Barnes, FI Parra, CM Roach, W Dorland

Abstract:

Sheared toroidal flows can cause bifurcations to zero-turbulent-transport states in tokamak plasmas. The maximum temperature gradients that can be reached are limited by subcritical turbulence driven by the parallel velocity gradient. Here it is shown that q/ϵ (magnetic field pitch/inverse aspect ratio) is a critical control parameter for sheared tokamak turbulence. By reducing q/ϵ, far higher temperature gradients can be achieved without triggering turbulence, in some instances comparable to those found experimentally in transport barriers. The zero-turbulence manifold is mapped out, in the zero-magnetic-shear limit, over the parameter space (γ(E), q/ϵ, R/L(T)), where γ(E) is the perpendicular flow shear and R/L(T) is the normalized inverse temperature gradient scale. The extent to which it can be constructed from linear theory is discussed.
Details from ArXiV
More details from the publisher
More details
More details

Turbulent transport and heating of trace heavy ions in hot magnetized plasmas.

Physical review letters 109:18 (2012) 185003

Authors:

M Barnes, FI Parra, W Dorland

Abstract:

Scaling laws for the transport and heating of trace heavy ions in low-frequency magnetized plasma turbulence are derived and compared with direct numerical simulations. The predicted dependences of turbulent fluxes and heating on ion charge and mass number are found to agree with numerical results for both stationary and differentially rotating plasmas. Heavy ion momentum transport is found to increase with mass, and heavy ions are found to be preferentially heated, implying a mass-dependent ion temperature for very weakly collisional plasmas and for partially ionized heavy ions in strongly rotating plasmas.
Details from ArXiV
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 23
  • Page 24
  • Page 25
  • Page 26
  • Current page 27
  • Page 28
  • Page 29
  • Page 30
  • Page 31
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet