Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Prof Michael Barnes

Professor in Theoretical Physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Theoretical astrophysics and plasma physics at RPC
michael.barnes@physics.ox.ac.uk
Telephone: 01865 (2)73960
Rudolf Peierls Centre for Theoretical Physics, room 50.10
  • About
  • Publications

A phase-shift-periodic parallel boundary condition for low-magnetic-shear scenarios

Plasma Physics and Controlled Fusion IOP Publishing 65:1 (2022) 15016

Authors:

DA St-Onge, Michael Barnes, FI Parra

Abstract:

We formulate a generalized periodic boundary condition as a limit of the standard twist-and-shift parallel boundary condition that is suitable for simulations of plasmas with low magnetic shear. This is done by applying a phase shift in the binormal direction when crossing the parallel boundary. While this phase shift can be set to zero without loss of generality in the local flux-tube limit when employing the twist-and-shift boundary condition, we show that this is not the most general case when employing periodic parallel boundaries, and may not even be the most desirable. A non-zero phase shift can be used to avoid the convective cells that plague simulations of the three-dimensional Hasegawa–Wakatani system, and is shown to have measurable effects in periodic low-magnetic-shear gyrokinetic simulations. We propose a numerical program where a sampling of periodic simulations at random pseudo-irrational flux surfaces are used to determine physical observables in a statistical sense. This approach can serve as an alternative to applying the twist-and-shift boundary condition to low-magnetic-shear scenarios, which, while more straightforward, can be computationally demanding.
More details from the publisher
Details from ORA
More details

Bistable turbulence in strongly magnetised plasmas with a sheared mean flow

(2022)

Authors:

Nicolas Christen, Michael Barnes, Michael R Hardman, Alexander A Schekochihin
More details from the publisher
Details from ORA
More details
Details from ArXiV

Prevention of core particle depletion in stellarators by turbulence

(2022)

Authors:

H Thienpondt, JM García-Regaña, I Calvo, JA Alonso, JL Velasco, A González-Jerez, M Barnes, K Brunner, O Ford, G Fuchert, J Knauer, E Pasch, L Vanó, the Wendelstein 7-X team
More details from the publisher

New linear stability parameter to describe low-$\beta$ electromagnetic microinstabilities driven by passing electrons in axisymmetric toroidal geometry

(2022)

Authors:

MR Hardman, FI Parra, BS Patel, CM Roach, J Ruiz Ruiz, M Barnes, D Dickinson, W Dorland, JF Parisi, D St-Onge, H Wilson
More details from the publisher
Details from ArXiV

A phase-shift-periodic parallel boundary condition for low-magnetic-shear scenarios

(2022)

Authors:

DA St-Onge, M Barnes, FI Parra
More details from the publisher
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Current page 7
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet