Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Prof Michael Barnes

Professor in Theoretical Physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Theoretical astrophysics and plasma physics at RPC
michael.barnes@physics.ox.ac.uk
Telephone: 01865 (2)73960
Rudolf Peierls Centre for Theoretical Physics, room 50.10
  • About
  • Publications

Phase-space entropy cascade and irreversibility of stochastic heating in nearly collisionless plasma turbulence.

Physical review. E American Physical Society (APS) 109:6-2 (2024) 65210

Authors:

Michael L Nastac, Robert J Ewart, Wrick Sengupta, Alexander A Schekochihin, Michael Barnes, William D Dorland

Abstract:

We consider a nearly collisionless plasma consisting of a species of "test particles" in one spatial and one velocity dimension, stirred by an externally imposed stochastic electric field-a kinetic analog of the Kraichnan model of passive advection. The mean effect on the particle distribution function is turbulent diffusion in velocity space-known as stochastic heating. Accompanying this heating is the generation of fine-scale structure in the distribution function, which we characterize with the collisionless (Casimir) invariant C_{2}∝∫∫dxdv〈f^{2}〉-a quantity that here plays the role of (negative) entropy of the distribution function. We find that C_{2} is transferred from large scales to small scales in both position and velocity space via a phase-space cascade enabled by both particle streaming and nonlinear interactions between particles and the stochastic electric field. We compute the steady-state fluxes and spectrum of C_{2} in Fourier space, with k and s denoting spatial and velocity wave numbers, respectively. In our model, the nonlinearity in the evolution equation for the spectrum turns into a fractional Laplacian operator in k space, leading to anomalous diffusion. Whereas even the linear phase mixing alone would lead to a constant flux of C_{2} to high s (towards the collisional dissipation range) at every k, the nonlinearity accelerates this cascade by intertwining velocity and position space so that the flux of C_{2} is to both high k and high s simultaneously. Integrating over velocity (spatial) wave numbers, the k-space (s-space) flux of C_{2} is constant down to a dissipation length (velocity) scale that tends to zero as the collision frequency does, even though the rate of collisional dissipation remains finite. The resulting spectrum in the inertial range is a self-similar function in the (k,s) plane, with power-law asymptotics at large k and s. Our model is fully analytically solvable, but the asymptotic scalings of the spectrum can also be found via a simple phenomenological theory whose key assumption is that the cascade is governed by a "critical balance" in phase space between the linear and nonlinear timescales. We argue that stochastic heating is made irreversible by this entropy cascade and that, while collisional dissipation accessed via phase mixing occurs only at small spatial scales rather than at every scale as it would in a linear system, the cascade makes phase mixing even more effective overall in the nonlinear regime than in the linear one.
More details from the publisher
More details
More details

Electrostatic microturbulence in W7-X: comparison of local gyrokinetic simulations with Doppler reflectometry measurements

Nuclear Fusion IOP Publishing 64:7 (2024) 076029

Authors:

A González-Jerez, JM García-Regaña, I Calvo, D Carralero, T Estrada, E Sánchez, M Barnes

Abstract:

The first experimental campaigns of Wendelstein 7-X (W7-X) have shown that turbulence plays a decisive role in the performance of neoclassically optimized stellarators. This stresses the importance of understanding microturbulence from the theoretical and experimental points of view. To this end, this paper addresses a comprehensive characterization of the turbulent fluctuations by means of nonlinear gyrokinetic simulations performed with the code stella in two W7-X scenarios. In the first part of the paper, the amplitude of the density fluctuations is calculated and compared with measurements obtained by Doppler reflectometry (DR) in the OP1 experimental campaigns. It is found that the trend of the fluctuations along the radius is explained by the access of the DR system to different regions of the turbulence wavenumber spectrum. In the second part of the article, frequency spectra of the density fluctuations and the zonal component of the turbulent flow are numerically characterized for comparisons against future experimental analyses. Both quantities feature broad frequency spectra with dominant frequencies of O(1)–O(10) kHz.
More details from the publisher
Details from ORA
More details

Beam divergence of RF negative hydrogen ion sources for fusion

Journal of Physics Conference Series IOP Publishing 2743:1 (2024) 012033

Authors:

C Wimmer, M Barnes, N den Harder, A Navarro, R Nocentini, G Orozco, D Wünderlich, B Heinemann, U Fantz, G Serianni, P Veltri
More details from the publisher

Suppression of temperature-gradient-driven turbulence by sheared flows in fusion plasmas

(2024)

Authors:

PG Ivanov, T Adkins, D Kennedy, M Giacomin, M Barnes, AA Schekochihin
More details from the publisher
Details from ArXiV

Towards ITER-Relevant CW Extraction at Negative Ion Sources for Fusion

Journal of Physics Conference Series IOP Publishing 2743:1 (2024) 012026

Authors:

D Wünderlich, C Wimmer, N den Harder, M Barnes, M Fröschle, A Heiler, A Navarro, R Riedl, D Yordanov, U Fantz, B Heinemann
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet