Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Crystal structure inside calcium fluoride with an implanted muon
Credit: SJB

Professor Stephen Blundell

Professor of Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Muons and magnets
Stephen.Blundell@physics.ox.ac.uk
Telephone: 01865 (2)72347
Clarendon Laboratory, room 108
  • About
  • Books
  • Teaching
  • Research
  • Publications

Structure and magnetism of La x Sr 2− x Co 0.5 Ir 0.5 O 4− y H y (0 < x < 1) iridium-containing oxyhydride phases †

Dalton Transactions Royal Society of Chemistry (2025)

Authors:

James I Murrell, Romain Wernert, Hank CH Wu, Benjamin M Huddart, Stephen J Blundell, Ronald I Smith, Michael A Hayward

Abstract:

Ruddlesden-Popper oxide phases in the LaxSr2−xCo0.5Ir0.5O4 (0 < x < 1) solid solution can be converted to the corresponding LaxSr2−xCo0.5Ir0.5O4−yHy oxyhydride phases, by topochemical reaction with LiH, in which the hydride ions are substituted exclusively onto the equatorial anion sites of the host framework. Analysis reveals that oxyhydride phases in the range 0.5 < x < 1 adopt LaxSr2−xCo0.5Ir0.5O2+xH2−x compositions which maintain a constant Co1+, Ir3+ oxidation-state combination (confirmed by Co K-edge XANES data), with the presence of low-spin d6 Ir3+ being consistent with the covalent stabilization of the metastable oxyhydride phases via strong Ir–H σ-bonds. Phases at the lanthanum-poor end of the solid solution (x < 0.5) adopt LaxSr2−xCo0.5Ir0.5O4−yHy compositions with lower hydride concentrations (y < 1.5). Magnetisation and μSR data indicate that all the LaxSr2−xCo0.5Ir0.5O4−yHy oxyhydride phases exhibit strong magnetic frustration, attributed to the large-scale cation and anion disorder, and resulting in glassy magnetic behaviour at low temperature.
More details from the publisher
Details from ORA
More details
More details

Magnetoelastic Dynamics of the Spin Jahn-Teller Transition in CoTi2O5

Physical Review Letters American Physical Society (APS) 134:25 (2025) 256702

Authors:

K Guratinder, RD Johnson, D Prabhakaran, RA Taylor, F Lang, SJ Blundell, LS Taran, SV Streltsov, TJ Williams, SR Giblin, T Fennell, K Schmalzl, C Stock

Abstract:

CoTi 2 O 5 has the paradox that low temperature static magnetic order is incompatible with the crystal structure owing to a mirror plane that exactly frustrates magnetic interactions. Despite no observable structural distortion with diffraction, CoTi 2 O 5 does magnetically order below T N ∼ 25 K with the breaking of spin ground state degeneracy proposed to be a realization of the spin Jahn-Teller effect in analogy to the celebrated orbital Jahn-Teller transition. We apply neutron and Raman spectroscopy to study the dynamics of this transition in CoTi 2 O 5 . We find anomalous acoustics associated with a symmetry breaking strain that characterizes the spin Jahn-Teller transition. Crucially, the energy of this phonon coincides with the energy scale of the magnetic excitations, and has the same symmetry of an optic mode, observed with Raman spectroscopy, which atypically softens in energy with decreasing temperature. Taken together, we propose that the energetics of the spin Jahn-Teller effect in CoTi 2 O 5 are related to cooperative magnetoelastic fluctuations as opposed to conventional soft critical dynamics which typically drive large measurable static displacements. Published by the American Physical Society 2025
More details from the publisher
More details
More details

Magnetoelastic dynamics of the "spin Jahn-Teller" transition in CoTi$_{2}$O$_{5}$

(2025)

Authors:

K Guratinder, RD Johnson, D Prabhakaran, RA Taylor, F Lang, SJ Blundell, LS Taran, SV Streltsov, TJ Williams, SR Giblin, T Fennell, K Schmalzl, C Stock
More details from the publisher

Electronic structure calculations for muon spectroscopy * * This article presents a summary of the state of the art of computational simulations for muon science. All authors have contributed equally to it

Electronic Structure IOP Publishing 7:2 (2025) 023001

Authors:

Stephen J Blundell, Miki Bonacci, Pietro Bonfà, Roberto De Renzi, Benjamin M Huddart, Tom Lancaster, Leandro M Liborio, Ifeanyi J Onuorah, Giovanni Pizzi, Francis L Pratt, John M Wilkinson

Abstract:

Muon spectroscopy has become a leading tool for the investigation of local magnetic fields in condensed matter physics, finding applications in the study of superconductivity, magnetism, ionic diffusion in battery materials, and numerous other fields. Though the muon yields quantitative information about the material, this can only be fully interpreted if the nature of the muon site and its stability is fully understood. Electronic structure calculations are of paramount importance for providing this understanding, particularly through a group of techniques that has become known as DFT +μ, density functional theory including the presence of the implanted muon. We describe how these electronic structure calculations can be used to underpin muon spectroscopy, and some examples of the science that follows from this, as well as some of the available software tools that are currently being developed.
More details from the publisher
Details from ORA
More details

Magnetic-field-induced ordering in a spin-1/2 chiral chain

(2025)

Authors:

Rebecca Scatena, Alberto Hernandez-Melian, Benjamin M Huddart, Sam Curley, Robert Williams, Pascal Manuel, Stephen J Blundell, Zurab Guguchia, Zachary E Manson, Jamie L Manson, G Timothy Noe, John Singleton, Tom Lancaster, Paul A Goddard, Roger D Johnson
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet