Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Crystal structure inside calcium fluoride with an implanted muon
Credit: SJB

Professor Stephen Blundell

Professor of Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Muons and magnets
Stephen.Blundell@physics.ox.ac.uk
Telephone: 01865 (2)72347
Clarendon Laboratory, room 108
  • About
  • Books
  • Teaching
  • Research
  • Publications

Multi-band description of the upper critical field of bulk FeSe

Physical Review B American Physical Society 108:18 (2023) 184507

Authors:

Matthew Bristow, Alexander Gower, Joseph Prentice, Md Watson, Z Zajicek, Stephen Blundell, Aa Haghighirad, A McCollam, Amalia Coldea

Abstract:

The upper critical field of multi-band superconductors can be an essential quantity to unravel the nature of superconducting pairing and its interplay with the electronic structure. Here we experimentally map out the complete upper critical field phase diagram of FeSe for different magnetic field orientations at temperatures down to 0.3 K using both resistivity and torque measurements. The temperature dependence of the upper critical field reflects that of a multi-band superconductor and requires a two-band description in the clean limit with band coupling parameters favouring interband over intraband interactions. Despite the relatively small Maki parameter in FeSe of α ∼ 1.6, the multi-band description of the upper critical field is consistent with the stabilization of a FFLO state below T /Tc ∼ 0.3. We find that the anomalous behaviour of the upper critical field is linked to a departure from the single-band picture, and FeSe provides a clear example where multi-band effects and the strong anisotropy of the superconducting gap need to be taken into account.
More details from the publisher
Details from ORA
More details

Essentials of signals and systems

Contemporary Physics Taylor & Francis 64:4 (2023) 320-320
More details from the publisher

When scientists disagree

NATURE REVIEWS PHYSICS Springer Nature 5:11 (2023) 628-629
More details from the publisher
Details from ORA
More details

Spatially anisotropic S=1 square-lattice antiferromagnet with single-ion anisotropy realized in a Ni(II) pyrazine- n,n′ -dioxide coordination polymer

Physical Review B American Physical Society (APS) 108:9 (2023) 094425-094425

Authors:

Jl Manson, Dm Pajerowski, Jm Donovan, B Twamley, Pa Goddard, R Johnson, J Bendix, J Singleton, T Lancaster, Sj Blundell, J Herbrych, Pj Baker, Aj Steele, Fl Pratt, I Franke-Chaudet, Rd McDonald, A Plonczak, P Manuel

Abstract:

The Ni(NCS)2(pyzdo)2 coordination polymer is found to be an S=1 spatially anisotropic square lattice with easy-axis single-ion anisotropy. This conclusion is based upon considering in concert the experimental probes x-ray diffraction, magnetic susceptibility, magnetic-field-dependent heat capacity, muon-spin relaxation, neutron diffraction, neutron spectroscopy, and pulsed-field magnetization. Long-range antiferromagnetic (AFM) order develops at TN=18.5K. Although the samples are polycrystalline, there is an observable spin-flop transition and saturation of the magnetization at ≈80T. Linear spin-wave theory yields spatially anisotropic exchanges within an AFM square lattice, Jx=0.235meV, Jy=2.014meV, and an easy-axis single-ion anisotropy D=-1.622meV (after renormalization). The anisotropy of the exchanges is supported by density functional theory.
More details from the publisher
Details from ORA
More details

DFT+μ: Density Functional Theory for Muon Site Determination

(2023)

Authors:

Sj Blundell, T Lancaster
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Current page 6
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet