Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Insertion of STC into TRT at the Department of Physics, Oxford
Credit: CERN

Professor Daniela Bortoletto

Professor and Head of Particle Physics

Research theme

  • Instrumentation
  • Fundamental particles and interactions

Sub department

  • Particle Physics

Research groups

  • AION/Magis
  • ATLAS
  • Future Colliders
  • Mu3e
  • OPMD
daniela.bortoletto@physics.ox.ac.uk
Telephone: 01865 (2)73635
Denys Wilkinson Building, room 608c1
  • About
  • Students
  • Research
  • Teaching
  • Publications

Evidence for longitudinally polarized $W$ bosons in the electroweak production of same-sign $W$ boson pairs in association with two jets in pp collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

ArXiv 2503.11317 (2025)
Details from ArXiV

Charged-hadron and identified-hadron ($K^\mathrm{0}_\mathrm{S}$, $Λ$, $Ξ^\mathrm{-}$) yield measurements in photo-nuclear Pb+Pb and $p$+Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV with ATLAS

ArXiv 2503.08181 (2025)
Details from ArXiV

Search for Higgs boson exotic decays into Lorentz-boosted light bosons in the four-$τ$ final state at $\sqrt{s}=13$ TeV with the ATLAS detector

ArXiv 2503.05463 (2025)
Details from ArXiV

Software and computing for Run 3 of the ATLAS experiment at the LHC

European Physical Journal C Springer Nature 85:3 (2025) 234

Authors:

G Aad, E Aakvaag, B Abbott, K Abeling, Nj Abicht, Sh Abidi, M Aboelela, A Aboulhorma, H Abramowicz, H Abreu, Y Abulaiti, E Accion Garcia, Bs Acharya, V Acin Portella, A Ackermann, C Acosta Silva, C Adam Bourdarios, L Adamczyk, Sv Addepalli, Mj Addison, J Adelman, A Adiguzel, T Adye, Aa Affolder, Y Afik, Mn Agaras, J Agarwala, A Aggarwal, C Agheorghiesei, A Ahmad, F Ahmadov, Ws Ahmed, S Ahuja, X Ai, G Aielli, A Aikot, M Ait Tamlihat, B Aitbenchikh, M Akbiyik, Tpa Åkesson, Av Akimov, D Akiyama, Nn Akolkar, S Aktas, K Al Khoury, Gl Alberghi, J Albert, P Albicocco, Gl Albouy, S Alderweireldt

Abstract:

<jats:title>Abstract</jats:title> <jats:p>The ATLAS experiment has developed extensive software and distributed computing systems for Run 3 of the LHC. These systems are described in detail, including software infrastructure and workflows, distributed data and workload management, database infrastructure, and validation. The use of these systems to prepare the data for physics analysis and assess its quality are described, along with the software tools used for data analysis itself. An outlook for the development of these projects towards Run 4 is also provided.</jats:p>
More details from the publisher

Configuration, Performance, and Commissioning of the ATLAS b-jet Triggers for the 2022 and 2023 LHC data-taking periods

Journal of Instrumentation IOP Publishing 20:03 (2025) P03002

Authors:

G Aad, E Aakvaag, B Abbott, S Abdelhameed, K Abeling, NJ Abicht, SH Abidi, M Aboelela, A Aboulhorma, H Abramowicz, Y Abulaiti, BS Acharya, A Ackermann, C Adam Bourdarios, L Adamczyk, SV Addepalli, MJ Addison, J Adelman, A Adiguzel, T Adye, AA Affolder, Y Afik, MN Agaras, A Aggarwal

Abstract:

In 2022 and 2023, the Large Hadron Collider produced approximately two billion hadronic interactions each second from bunches of protons that collide at a rate of 40 MHz. The ATLAS trigger system is used to reduce this rate to a few kHz for recording. Selections based on hadronic jets, their energy, and event topology reduce the rate to 𝒪(10) kHz while maintaining high efficiencies for important signatures resulting in b-quarks, but to reach the desired recording rate of hundreds of Hz, additional real-time selections based on the identification of jets containing b-hadrons (b-jets) are employed to achieve low thresholds on the jet transverse momentum at the High-Level Trigger. The configuration, commissioning, and performance of the real-time ATLAS b-jet identification algorithms for the early LHC Run 3 collision data are presented. These recent developments provide substantial gains in signal efficiency for critical signatures; for the Standard Model production of Higgs boson pairs, a 50% improvement in selection efficiency is observed in final states with four b-quarks or two b-quarks and two hadronically decaying τ-leptons.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 13
  • Page 14
  • Page 15
  • Page 16
  • Current page 17
  • Page 18
  • Page 19
  • Page 20
  • Page 21
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet