Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Juno Jupiter image

Neil Bowles

Professor of Planetary Science

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Planetary atmosphere observation analysis
  • Planetary surfaces
  • Solar system
  • Space instrumentation
Neil.Bowles@physics.ox.ac.uk
Telephone: 01865 (2)72097
Atmospheric Physics Clarendon Laboratory, room 307
  • About
  • Publications

Remote-sensing characterization of major Solar System bodies with the Twinkle space telescope

Journal of Astronomical Telescopes Instruments and Systems SPIE 5:1 (2019) 014006

Authors:

B Edwards, S Lindsay, G Savini, G Tinetti, C Arena, Neil Bowles, M Tessenyi

Abstract:

Remote-sensing observations of Solar System objects with a space telescope offer a key method of understanding celestial bodies and contributing to planetary formation and evolution theories. The capabilities of Twinkle, a space telescope in a low Earth orbit with a 0.45-m mirror, to acquire spectroscopic data of Solar System targets in the visible and infrared are assessed. Twinkle is a general observatory that provides on-demand observations of a wide variety of targets within wavelength ranges that are currently not accessible using other space telescopes or that are accessible only to oversubscribed observatories in the short-term future. We determine the periods for which numerous Solar System objects could be observed and find that Solar System objects are regularly observable. The photon flux of major bodies is determined for comparison to the sensitivity and saturation limits of Twinkle's instrumentation and we find that the satellite's capability varies across the three spectral bands (0.4 to 1, 1.3 to 2.42, and 2.42 to 4.5 μm). We find that for a number of targets, including the outer planets, their large moons, and bright asteroids, the model created predicts that with short exposure times, high-resolution spectra (R ~ 250, λ < 2.42 μm; R ~ 60, λ > 2.42 μm) could be obtained with signal-to-noise ratio (SNR) of > 100 with exposure times of <300 s. For other targets (e.g., Phobos), an SNR > 10 would be achievable in 300 s (or less) for spectra at Twinkle's native resolution. Fainter or smaller targets (e.g., Pluto) may require multiple observations if resolution or data quality cannot be sacrificed. Objects such as the outer dwarf planet Eris are deemed too small, faint or distant for Twinkle to obtain photometric or spectroscopic data of reasonable quality (SNR > 10) without requiring large amounts of observation time. Despite this, the Solar System is found to be permeated with targets that could be readily observed by Twinkle.
More details from the publisher
Details from ORA
More details

Modeling the angular dependence of emissivity of randomly rough surfaces

Journal of Geophysical Research American Geophysical Union 124:2 (2019) 585-601

Authors:

Tristram Warren, Neil Bowles, Kerri Donaldson Hanna, J Bandfield

Abstract:

Directional emissivity (DE) describes how the emissivity of an isothermal surface changes with viewing angle across thermal infrared wavelengths. The Oxford Space Environment Goniometer (OSEG) is a novel instrument that has been specifically designed to measure the DE of regolith materials derived from planetary surfaces. The DE of Nextel high emissivity black paint was previously measured by the OSEG and showed that the measured emissivity decreases with increasing emission angle, from an emissivity of 0.97 ± 0.01 at 0° emission angle to an emissivity of 0.89± 0.01 at 71° emission angle. The Nextel target measured was isothermal (<0.1 K surface temperature variation) and the observed change in emissivity was due to Fresnel related effects and was not due to non-isothermal effects. Here we apply several increasingly complex modelling techniques to model the measured DE of Nextel black paint. The modelling techniques used here include the Hapke DE model, the Fresnel equations, a multiple slope Fresnel model and a Monte Carlo ray-tracing model. It was found that only the Monte Carlo raytracing model could accurately fit the OSEG measured Nextel data. We show that this is because the Monte Carlo ray-tracing model is the only model that fully accounts for the surface roughness of the Nextel surface by including multiple scattering effects.
More details from the publisher
Details from ORA
More details

SEIS: Insight's Seismic Experiment for Internal Structure of Mars

SPACE SCIENCE REVIEWS 215:1 (2019) UNSP 12

Authors:

P Lognonne, WB Banerdt, D Giardini, WT Pike, U Christensen, P Laudet, S de Raucourt, P Zweifel, S Calcutt, M Bierwirth, KJ Hurst, F Ijpelaan, JW Umland, R Llorca-Cejudo, SA Larson, RF Garcia, S Kedar, B Knapmeyer-Endrun, D Mimoun, A Mocquet, MP Panning, RC Weber, A Sylvestre-Baron, G Pont, N Verdier, L Kerjean, LJ Facto, V Gharakanian, JE Feldman, TL Hoffman, DB Klein, K Klein, NP Onufer, J Paredes-Garcia, MP Petkov, JR Willis, SE Smrekar, M Drilleau, T Gabsi, T Nebut, O Robert, S Tillier, C Moreau, M Parise, G Aveni, S Ben Charef, Y Bennour, T Camus, PA Dandonneau, C Desfoux, B Lecomte, O Pot, P Revuz, D Mance, J tenPierick, NE Bowles, C Charalambous, AK Delahunty, J Hurley, R Irshad, Huafeng Liu, AG Mukherjee, IM Standley, AE Stott, J Temple, T Warren, M Eberhardt, A Kramer, W Kuehne, E-P Miettinen, M Monecke, C Aicardi, M Andre, J Baroukh, A Borrien, A Bouisset, P Boutte, K Brethome, C Brysbaert, T Carlier, M Deleuze, JM Desmarres, D Dilhan, C Doucet, D Faye, N Faye-Refalo, R Gonzalez, C Imbert, C Larigauderie, E Locatelli, L Luno, J-R Meyer, F Mialhe, JM Mouret, M Nonon, Y Pahn, A Paillet, P Pasquier, G Perez, R Perez, L Perrin, B Pouilloux, A Rosak, I Savin de Larclause, J Sicre, M Sodki, N Toulemont, B Vella, C Yana, F Alibay, OM Avalos, MA Balzer, P Bhandari, E Blanco, BD Bone, JC Bousman, P Bruneau, FJ Calef, RJ Calvet, SA D'Agostino, G de los Santos, RG Deen, RW Denise, J Ervin, NW Ferraro, HE Gengl, F Grinblat, D Hernandez, M Hetzel, ME Johnson, L Khachikyan, JY Lin, SM Madzunkov, SL Marshall, IG Mikellides, EA Miller, W Raff, JE Singer, CM Sunday, JF Villalvazo, MC Wallace, D Banfield, JA Rodriguez-Manfredi, CT Russell, A Trebi-Ollennu, JN Maki, E Beucler, M Bose, C Bonjour, JL Berenguer, S Ceylan, J Clinton, V Conejero, I Daubar, V Dehant, P Delage, F Euchner, I Esteve, L Fayon, L Ferraioli, CL Johnson, J Gagnepain-Beyneix, M Golombek, A Khan, T Kawamura, B Kenda, P Labrot, N Murdoch, C Pardo, C Perrin, L Pou, A Sauron, D Savoie, S Stahler, E Stutzmann, NA Teanby, J Tromp, M van Driel, M Wieczorek, R Widmer-Schnidrig, J Wookey
More details from the publisher
Details from ORA
More details
More details
More details

Analysis of gaseous ammonia (NH3) absorption in the visible spectrum of Jupiter - Update

Icarus Elsevier 321 (2018) 572-582

Authors:

Patrick Irwin, Neil Bowles, Ashwin Braude, Ryan Garland, Simon Calcutt, PA Coles, J Tennyson

Abstract:

An analysis of currently available ammonia (NH3) visible-to-near-infrared gas absorption data was recently undertaken by Irwin et al. (2018) to help interpret Very Large Telescope (VLT) MUSE observations of Jupiter from 0.48–0.93 µm, made in support of the NASA/Juno mission. Since this analysis a newly revised set of ammonia line data, covering the previously poorly constrained range 0.5–0.833 µm, has been released by the ExoMol project, “C2018” (Coles et al., 2018), which demonstrates significant advantages over previously available data sets, and provides for the first time complete line data for the previously poorly constrained 5520- and 6475-Å bands of NH3. In this paper we compare spectra calculated using the ExoMol–C2018 data set (Coles et al., 2018) with spectra calculated from previous sources to demonstrate its advantages. We conclude that at the present time the ExoMol–C2018 dataset provides the most reliable ammonia absorption source for analysing low- to medium-resolution spectra of Jupiter in the visible/near-IR spectral range, but note that the data are less able to model high-resolution spectra owing to small, but significant inaccuracies in the line wavenumber estimates. This work is of significance not only for solar system planetary physics, but for future proposed observations of Jupiter-like planets orbiting other stars, such as with NASA’s planned Wide-Field Infrared Survey Telescope (WFIRST).
More details from the publisher
Details from ORA
More details

Spectral characterization of analog samples in anticipation of OSIRIS-REx's arrival at Bennu: A blind test study

Icarus Elsevier 319 (2018) 701-723

Authors:

Kerri L Donaldson Hanna, DL Schrader, EA Cloutis, GD Cody, AJ King, TJ McCoy, DM Applin, JP Mann, Neil E Bowles, Brucato, HC Connolly, E Dotto, LP Keller, LF Lim, BE Clark, VE Hamilton, C Lantz, DS Lauretta, SS Russell, PF Schofield

Abstract:

We present spectral measurements of a suite of mineral mixtures and meteorites that are possible analogs for asteroid (101955) Bennu, the target asteroid for NASA's Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx) mission. The sample suite, which includes anhydrous and hydrated mineral mixtures and a suite of chondritic meteorites (CM, CI, CV, CR, and L5), was chosen to characterize the spectral effects due to varying amounts of aqueous alteration and minor amounts of organic material. Our results demonstrate the utility of mineral mixtures for understanding the mixing behavior of meteoritic materials and identifying spectrally dominant species across the visible to near-infrared (VNIR) and thermal infrared (TIR) spectral ranges. Our measurements demonstrate that, even with subtle signatures in the spectra of chondritic meteorites, we can identify diagnostic features related to the minerals comprising each of the samples. Also, the complementary nature of the two spectral ranges regarding their ability to detect different mixture and meteorite components can be used to characterize analog sample compositions better. However, we observe differences in the VNIR and TIR spectra between the mineral mixtures and the meteorites. These differences likely result from (1) differences in the types and physical disposition of constituents in the mixtures versus in meteorites, (2) missing phases observed in meteorites that we did not add to the mixtures, and (3) albedo differences among the samples. In addition to the initial characterization of the analog samples, we will use these spectral measurements to test phase detection and abundance determination algorithms in anticipation of mapping Bennu's surface properties and selecting a sampling site.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • Current page 11
  • Page 12
  • Page 13
  • Page 14
  • Page 15
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet