Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Andrea Cavalleri

Professor of Physics

Sub department

  • Atomic and Laser Physics
andrea.cavalleri@physics.ox.ac.uk
Telephone: 01865 (2)72365
Clarendon Laboratory, room 316.3
  • About
  • Publications

Phase diagram for light-induced superconductivity in κ−(ET)2−X

Physical Review Letters American Physical Society 127:19 (2021) 197002

Authors:

M Buzzi, D Nicoletti, S Fava, G Jotzu, K Miyagawa, K Kanoda, A Henderson, T Siegrist, Ja Schlueter, M-S Nam, A Ardavan, A Cavalleri

Abstract:

Resonant optical excitation of certain molecular vibrations in κ−(BEDT−TTF)2Cu[N(CN)2]Br has been shown to induce transient superconductinglike optical properties at temperatures far above equilibrium Tc. Here, we report experiments across the bandwidth-tuned phase diagram of this class of materials, and study the Mott insulator κ−(BEDT−TTF)2Cu[N(CN)2]Cl and the metallic compound κ−(BEDT−TTF)2Cu(NCS)2. We find nonequilibrium photoinduced superconductivity only in κ−(BEDT−TTF)2Cu[N(CN)2]Br, indicating that the proximity to the Mott insulating phase and possibly the presence of preexisting superconducting fluctuations are prerequisites for this effect.
More details from the publisher
Details from ORA
More details
More details

Engineering crystal structures with light

Nature Physics Springer Nature 17:10 (2021) 1087-1092

Authors:

Ankit S Disa, Tobia F Nova, Andrea Cavalleri

Abstract:

The crystal structure of a solid largely dictates its electronic, optical and mechanical properties. Indeed, much of the exploration of quantum materials in recent years including the discovery of new phases and phenomena in correlated, topological and two-dimensional materials—has been based on the ability to rationally control crystal structures through materials synthesis, strain engineering or heterostructuring of van der Waals bonded materials. These static approaches, while enormously powerful, are limited by thermodynamic and elastic constraints. An emerging avenue of study has focused on extending such structural control to the dynamical regime by using resonant laser pulses to drive vibrational modes in a crystal. This paradigm of ‘nonlinear phononics’ provides a basis for rationally designing the structure and symmetry of crystals with light, allowing for the manipulation of functional properties at high speed and, in many instances, beyond what may be possible in equilibrium. Here we provide an overview of the developments in this field, discussing the theory, applications and future prospects of optical crystal structure engineering.
More details from the publisher
Details from ORA
More details
More details

Designing and controlling the properties of transition metal oxide quantum materials

Nature Materials Springer Nature 20:11 (2021) 1462-1468

Authors:

Charles Ahn, Andrea Cavalleri, Antoine Georges, Sohrab Ismail-Beigi, Andrew J Millis, Jean-Marc Triscone

Abstract:

This Perspective addresses the design, creation, characterization and control of synthetic quantum materials with strong electronic correlations. We show how emerging synergies between theoretical/computational approaches and materials design/experimental probes are driving recent advances in the discovery, understanding and control of new electronic behaviour in materials systems with interesting and potentially technologically important properties. The focus here is on transition metal oxides, where electronic correlations lead to a myriad of functional properties including superconductivity, magnetism, Mott transitions, multiferroicity and emergent behaviour at picoscale-designed interfaces. Current opportunities and challenges are also addressed, including possible new discoveries of non-equilibrium phenomena and optical control of correlated quantum phases of transition metal oxides.
More details from the publisher
Details from ORA
More details
More details

Tuning Metastable Light-Induced Superconductivity in K3C60with a Hybrid CO2-Ti: Sapphire Laser

2021 Conference on Lasers and Electro-Optics, CLEO 2021 - Proceedings (2021)

Authors:

M Budden, T Gebert, M Buzzi, G Jotzu, E Wang, T Matsuyama, G Meier, Y Laplace, D Pontiroli, M Ricco, F Schlawin, D Jaksch, A Cavalleri

Abstract:

High power mid-infrared light pulses of tunable pulse length were generated to stabilize light-induced superconductivity in K3C60 for nanoseconds. This metastable state showed a vanishing electrical resistance at five times the material's equilibrium critical temperature.

Higgs-mediated optical amplification in a nonequilibrium superconductor

Physical Review X American Physical Society 11 (2021) 11055

Authors:

Michele Buzzi, Gregor Jotzu, Andrea Cavalleri, J Ignacio Cirac, Eugene A Demler, Bertrand I Halperin, Mikhail D Lukin, Tao Shi, Yao Wang, Daniel Podolsky

Abstract:

We propose a novel nonequilibrium phenomenon, through which a prompt quench from a metal to a transient superconducting state can induce large oscillations of the order parameter amplitude. We argue that this oscillating mode acts as a source of parametric amplification of the incident radiation. We report experimental results on optically driven K3C60 that are consistent with these predictions. The effect is found to disappear when the onset of the excitation becomes slower than the Higgs-mode period, consistent with the theory proposed here. These results open new possibilities for the use of collective modes in many-body systems to induce nonlinear optical effects.

More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Current page 7
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet