Author Correction: Polarizing an antiferromagnet by optical engineering of the crystal field
Nature Physics Springer Nature 16:12 (2020) 1238-1238
Quantum electrodynamic control of matter: cavity-enhanced ferroelectric phase transition
Physical Review X American Physical Society 10 (2020) 041027
Abstract:
The light-matter interaction can be utilized to qualitatively alter physical properties of materials. Recent theoretical and experimental studies have explored this possibility of controlling matter by light based on driving many-body systems via strong classical electromagnetic radiation, leading to a time-dependent Hamiltonian for electronic or lattice degrees of freedom. To avoid inevitable heating, pump-probe setups with ultrashort laser pulses have so far been used to study transient light-induced modifications in materials. Here, we pursue yet another direction of controlling quantum matter by modifying quantum fluctuations of its electromagnetic environment. In contrast to earlier proposals on light-enhanced electron-electron interactions, we consider a dipolar quantum many-body system embedded in a cavity composed of metal mirrors and formulate a theoretical framework to manipulate its equilibrium properties on the basis of quantum light-matter interaction. We analyze hybridization of different types of the fundamental excitations, including dipolar phonons, cavity photons, and plasmons in metal mirrors, arising from the cavity confinement in the regime of strong light-matter interaction. This hybridization qualitatively alters the nature of the collective excitations and can be used to selectively control energy-level structures in a wide range of platforms. Most notably, in quantum paraelectrics, we show that the cavity-induced softening of infrared optical phonons enhances the ferroelectric phase in comparison with the bulk materials. Our findings suggest an intriguing possibility of inducing a superradiant-type transition via the light-matter coupling without external pumping. We also discuss possible applications of the cavity-induced modifications in collective excitations to molecular materials and excitonic devices.Parametric resonance of Josephson plasma waves: A theory for optically amplified interlayer superconductivity in YBa2Cu3O6+x
Physical Review B American Physical Society (APS) 102:17 (2020) 174505
Dynamical order and superconductivity in a frustrated many-body system
Physical Review Letters American Physical Society 125 (2020) 137001
Abstract:
In triangular lattice structures, spatial anisotropy and frustration can lead to rich equilibrium phase diagrams with regions containing complex, highly entangled states of matter. In this work, we study the driven two-rung triangular Hubbard model and evolve these states out of equilibrium, observing how the interplay between the driving and the initial state unexpectedly shuts down the particle-hole excitation pathway. This restriction, which symmetry arguments fail to predict, dictates the transient dynamics of the system, causing the available particle-hole degrees of freedom to manifest uniform long-range order. We discuss implications of our results for a recent experiment on photoinduced superconductivity in κ − ( BEDT − TTF ) 2 Cu [ N ( CN ) 2 ] Br molecules.Photo-molecular high temperature superconductivity
Physical Review X American Physical Society 10 (2020) 031028