Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

John Chalker

Professorial Research Fellow

Research theme

  • Fields, strings, and quantum dynamics
  • Quantum materials

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
John.Chalker@physics.ox.ac.uk
Telephone: 01865 (2)73973
Rudolf Peierls Centre for Theoretical Physics, room 70.07
  • About
  • Teaching
  • Publications

Exact results for interacting electrons in high Landau levels

ArXiv cond-mat/9606177 (1996)

Authors:

R Moessner, JT Chalker

Abstract:

We study a two-dimensional electron system in a magnetic field with a fermion hardcore interaction and without disorder. Projecting the Hamiltonian onto the n-th Landau level, we show that the Hartree-Fock theory is exact in the limit n \rightarrow \infty, for the high temperature, uniform density phase of an infinite system; for a finite-size system, it is exact at all temperatures. In addition, we show that a charge-density wave arises below a transition temperature T_t. Using Landau theory, we construct a phase diagram which contains both unidirectional and triangular charge-density wave phases. We discuss the unidirectional charge-density wave at zero temperature and argue that quantum fluctuations are unimportant in the large-n limit. Finally, we discuss the accuracy of the Hartree-Fock approximation for potentials with a nonzero range such as the Coulomb interaction.
Details from ArXiV
More details from the publisher
More details
More details

Random Walks through the Ensemble: Linking Spectral Statistics with Wavefunction Correlations in Disordered Metals

ArXiv cond-mat/9606054 (1996)

Authors:

JT Chalker, Igor V Lerner, Robert A Smith

Abstract:

We use a random walk in the ensemble of impurity configurations to generate a Brownian motion model for energy levels in disordered conductors. Treating arc-length along the random walk as fictitous time, the resulting Langevin equation relates spectral statistics to eigenfunction correlations. Solving this equation at energy scales large compared with the mean level spacing, we obtain the spectral form factor, and its parametric dependence.
Details from ArXiV
More details from the publisher
More details
More details

Fictitious Level Dynamics: A Novel Approach to Spectral Statistics in Disordered Conductors

ArXiv cond-mat/9606044 (1996)

Authors:

JT Chalker, Igor V Lerner, Robert A Smith

Abstract:

We establish a new approach to calculating spectral statistics in disordered conductors, by considering how energy levels move in response to changes in the impurity potential. We use this fictitious dynamics to calculate the spectral form factor in two ways. First, describing the dynamics using a Fokker-Planck equation, we make a physically motivated decoupling, obtaining the spectral correlations in terms of the quantum return probability. Second, from an identity which we derive between two- and three-particle correlation functions, we make a mathematically controlled decoupling to obtain the same result. We also calculate weak localization corrections to this result, and show for two dimensional systems (which are of most interest) that corrections vanish to three-loop order.
Details from ArXiV
More details from the publisher

Models for the integer quantum Hall effect: the network model, the Dirac equation, and a tight-binding Hamiltonian

ArXiv cond-mat/9605073 (1996)

Authors:

C-M Ho, JT Chalker

Abstract:

We consider models for the plateau transition in the integer quantum Hall effect. Starting from the network model, we construct a mapping to the Dirac Hamiltonian in two dimensions. In the general case, the Dirac Hamiltonian has randomness in the mass, the scalar potential, and the vector potential. Separately, we show that the network model can also be associated with a nearest neighbour, tight-binding Hamiltonian.
Details from ArXiV
More details from the publisher
More details
More details

Multiple scattering in the presence of absorption: A theoretical treatment for quasi one-dimensional systems

JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL 29:14 (1996) 3761-3768

Authors:

NA Bruce, JT Chalker
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 22
  • Page 23
  • Page 24
  • Page 25
  • Current page 26
  • Page 27
  • Page 28
  • Page 29
  • Page 30
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet