Spin textures, screening and excitations in dirty quantum Hall ferromagnets
Physical Review Letters 88 (2002) 036801 4pp
Spin quantum Hall transition in disordered superconductors
PHYSICA E 9:3 (2001) 352-355
Abstract:
We study a delocalization transition for non-interacting quasiparticles moving in two dimensions, which belongs to a new symmetry class. This symmetry class can be realized in a dirty, gapless superconductor in which time-reversal symmetry for orbital motion is broken, but spin rotation symmetry is intact. We find a direct transition between two insulating phases with quantized Hall conductances of zero and two for the conserved quasiparticles. The energy of quasiparticles acts as a relevant, symmetry-breaking field at the critical point, which splits the direct transition into two conventional plateau transitions. (C) 2001 Elsevier Science B.V. All rights reserved.Quantum disorder in the two-dimensional pyrochlore Heisenberg antiferromagnet
ArXiv cond-mat/0102447 (2001)
Abstract:
We present the results of an exact diagonalization study of the spin-1/2 Heisenberg antiferromagnet on a two-dimensional version of the pyrochlore lattice, also known as the square lattice with crossings or the checkerboard lattice. Examining the low energy spectra for systems of up to 24 spins, we find that all clusters studied have non-degenerate ground states with total spin zero, and big energy gaps to states with higher total spin. We also find a large number of non-magnetic excitations at energies within this spin gap. Spin-spin and spin-Peierls correlation functions appear to be short-ranged, and we suggest that the ground state is a spin liquid.Thermal metal in network models of a disordered two-dimensional superconductor
ArXiv cond-mat/0009463 (2000)
Abstract:
We study the universality class for localization which arises from models of non-interacting quasiparticles in disordered superconductors that have neither time-reversal nor spin-rotation symmetries. Two-dimensional systems in this category, which is known as class D, can display phases with three different types of quasiparticle dynamics: metallic, localized, or with a quantized (thermal) Hall conductance. Correspondingly, they can show a variety of delocalization transitions. We illustrate this behavior by investigating numerically the phase diagrams of network models with the appropriate symmetry, and for the first time show the appearance of the metallic phase.The effects of interactions and disorder in the two-dimensional chiral metal
ArXiv cond-mat/0005151 (2000)