Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

John Chalker

Professorial Research Fellow

Research theme

  • Fields, strings, and quantum dynamics
  • Quantum materials

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
John.Chalker@physics.ox.ac.uk
Telephone: 01865 (2)73973
Rudolf Peierls Centre for Theoretical Physics, room 70.07
  • About
  • Teaching
  • Publications

Spectral statistics and many-body quantum chaos with conserved charge

Phys. Rev. Lett. 123 (2019) 210603-210603

Authors:

Aaron J Friedman, Amos Chan, Andrea De Luca, JT Chalker

Abstract:

We investigate spectral statistics in spatially extended, chaotic many-body quantum systems with a conserved charge. We compute the spectral form factor $K(t)$ analytically for a minimal Floquet circuit model that has a $U(1)$ symmetry encoded via auxiliary spin-$1/2$ degrees of freedom. Averaging over an ensemble of realizations, we relate $K(t)$ to a partition function for the spins, given by a Trotterization of the spin-$1/2$ Heisenberg ferromagnet. Using Bethe Ansatz techniques, we extract the 'Thouless time' $t^{\vphantom{*}}_{\rm Th}$ demarcating the extent of random matrix behavior, and find scaling behavior governed by diffusion for $K(t)$ at $t\lesssim t^{\vphantom{*}}_{\rm Th}$. We also report numerical results for $K(t)$ in a generic Floquet spin model, which are consistent with these analytic predictions.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Goldstone modes in the emergent gauge fields of a frustrated magnet

(2019)

Authors:

Samuel J Garratt, JT Chalker
More details from the publisher

Exact solution of a percolation analog for the many-body localization transition

Physical Review Letters American Physical Society 99:22 (2019) 99

Authors:

Sthitadhi Roy, David Logan, John Chalker

Abstract:

We construct and solve a classical percolation model with a phase transition that we argue acts as a proxy for the quantum many-body localization transition. The classical model is defined on a graph in the Fock space of a disordered, interacting quantum spin chain, using a convenient choice of basis. Edges of the graph represent matrix elements of the spin Hamiltonian between pairs of basis states that are expected to hybridize strongly. At weak disorder, all nodes are connected, forming a single cluster. Many separate clusters appear above a critical disorder strength, each typically having a size that is exponentially large in the number of spins but a vanishing fraction of the Fock-space dimension. We formulate a transfer matrix approach that yields an exact value ν = 2 for the localization length exponent, and also use complete enumeration of clusters to study the transition numerically in finite-sized systems.
More details from the publisher
Details from ORA
More details
Details from ArXiV
More details

Eigenstate correlations, thermalization, and the butterfly effect

Physical Review Letters American Physical Society 122:22 (2019) 220601

Authors:

Amos Chan, Andrea De Luca, John Chalker

Abstract:

We discuss eigenstate correlations for ergodic, spatially extended many-body quantum systems, in terms of the statistical properties of matrix elements of local observables. While the eigenstate thermalization hypothesis (ETH) is known to give an excellent description of these quantities, the phenomenon of scrambling and the butterfly effect imply structure beyond ETH. We determine the universal form of this structure at long distances and small eigenvalue separations for Floquet systems. We use numerical studies of a Floquet quantum circuit to illustrate both the accuracy of ETH and the existence of our predicted additional correlations.
More details from the publisher
Details from ORA

Magnetic Excitations of the Classical Spin Liquid MgCr2O4

PHYSICAL REVIEW LETTERS 122:9 (2019) ARTN 097201

Authors:

X Bai, JAM Paddison, E Kapit, SM Koohpayeh, J-J Wen, SE Dutton, AT Savici, AI Kolesnikov, GE Granroth, CL Broholm, JT Chalker, M Mourigal
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Current page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet