Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

John Chalker

Professorial Research Fellow

Research theme

  • Fields, strings, and quantum dynamics
  • Quantum materials

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
John.Chalker@physics.ox.ac.uk
Telephone: 01865 (2)73973
Rudolf Peierls Centre for Theoretical Physics, room 70.07
  • About
  • Teaching
  • Publications

Percolation in Fock space as a proxy for many-body localisation

(2018)

Authors:

Sthitadhi Roy, JT Chalker, David E Logan
More details from the publisher

Exact solution of a percolation analogue for the many-body localisation transition

(2018)

Authors:

Sthitadhi Roy, David E Logan, JT Chalker
More details from the publisher

Mott, Floquet, and the response of periodically driven Anderson insulators

Physical Review B 98:21 (2018)

Authors:

DT Liu, JT Chalker, V Khemani, SL Sondhi

Abstract:

© 2018 American Physical Society. We consider periodically driven Anderson insulators. The short-time behavior for weak, monochromatic, uniform electric fields is given by linear response theory and was famously derived by Mott. We go beyond this to consider both long times - which is the physics of Floquet late time states - and strong electric fields. This results in a "phase diagram" in the frequency-field strength plane, in which we identify four distinct regimes. These are a linear response regime dominated by preexisting Mott resonances, which exists provided Floquet saturation is not reached within a period; a nonlinear perturbative regime, which exhibits multiphoton-absorption in response to the field; a near-adiabatic regime, which exhibits a primarily reactive response spread over the entire sample and is insensitive to preexisting resonances; and finally an enhanced dissipative regime.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Solution of a Minimal Model for Many-Body Quantum Chaos

PHYSICAL REVIEW X 8:4 (2018) ARTN 041019

Authors:

Amos Chan, Andrea De Luca, JT Chalker
More details from the publisher
More details
Details from ArXiV

Solution of a minimal model for many-body quantum chaos

Physical Review X American Physical Society 8:4 (2018) 041019

Authors:

Amos Chan, Andrea De Luca, John Chalker

Abstract:

We solve a minimal model for an ergodic phase in a spatially extended quantum many-body system. The model consists of a chain of sites with nearest-neighbor coupling under Floquet time evolution. Quantum states at each site span a q-dimensional Hilbert space, and time evolution for a pair of sites is generated by a q2 × q2 random unitary matrix. The Floquet operator is specified by a quantum circuit of depth two, in which each site is coupled to its neighbor on one side during the first half of the evolution period and to its neighbor on the other side during the second half of the period. We show how dynamical behavior averaged over realizations of the random matrices can be evaluated using diagrammatic techniques and how this approach leads to exact expressions in the large-q limit. We give results for the spectral form factor, relaxation of local observables, bipartite entanglement growth, and operator spreading.
More details from the publisher
Details from ORA

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Current page 6
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet