Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Professor Joseph Conlon

Professor of Theoretical Physics

Research theme

  • Particle astrophysics & cosmology
  • Fundamental particles and interactions
  • Fields, strings, and quantum dynamics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Particle theory
Joseph.Conlon@physics.ox.ac.uk
Telephone: 01865 (2)73608
Rudolf Peierls Centre for Theoretical Physics, room 60.10
My personal webpage
  • About
  • Publications

Catch-me-if-you-can: the overshoot problem and the weak/inflation hierarchy

Journal of High Energy Physics Springer 2022:11 (2022) 155

Authors:

Joseph Conlon, Filippo Revello

Abstract:

We study the overshoot problem in the context of post-inflationary string cosmology (in particular LVS). LVS cosmology features a long kination epoch as the volume modulus rolls down the exponential slope towards the final minimum, with an energy density that scales as m 4s. It is a known fact that such a roll admits attractor tracker solutions, and if these are located the overshoot problem is solved. We show that, provided a sufficiently large hierarchy exists between the inflationary scale and the weak scale, this will always occur in LVS as initial seed radiation grows into the tracker solution. The consistency requirement of ending in a stable vacuum containing the weak hierarchy therefore gives a preference for high inflationary scales — an anthropic argument, if one likes, for a large inflation/weak hierarchy. We discuss various origins, both universal and model-dependent, of the initial seed radiation (or matter). One particularly interesting case is that of a fundamental string network arising from brane inflation — this may lead to an early epoch in which the universe energy density principally consists of gravitational waves, while an LVS fundamental string network survives into the present universe.

More details from the publisher
Details from ORA
More details

Catch-Me-If-You-Can: The Overshoot Problem and the Weak/Inflation Hierarchy

(2022)

Authors:

Joseph P Conlon, Filippo Revello
More details from the publisher
Details from ArXiV

Exploring the holographic swampland

Journal of High Energy Physics Springer 2022:4 (2022) 117

Authors:

Joseph Conlon, Sirui Ning, Filippo Revello

Abstract:

We extend studies of holographic aspects of moduli stabilisation scenarios to both fibred versions of LVS and the type IIA DGKT flux vacua. We study the holographic properties of the low-energy moduli Lagrangian that describes both the AdS vacuum and also small perturbations about it. For type IIA vacua in the large-volume regime, the CFT data (operator dimensions and higher-point interactions) take a universal form independent of the many arbitrary flux choices, as was previously found for LVS stabilisation. For these IIA vacua the conformal dimensions of the dual operators are also, surprisingly, all integers, although we do not understand a deeper reason why this is so. In contrast to behaviour previously found for LVS and KKLT, the fibred models also admit cases of mixed double-trace operators (for two different axion fields) where the anomalous dimension is positive.
More details from the publisher
Details from ORA
More details

Integer Conformal Dimensions for Type IIA Flux Vacua

(2022)

Authors:

Fien Apers, Joseph P Conlon, Sirui Ning, Filippo Revello
More details from the publisher
Details from ArXiV

Exploring The Holographic Swampland

(2021)

Authors:

Joseph P Conlon, Sirui Ning, Filippo Revello
More details from the publisher
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet