Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Beecroft building, Department of Physics, University of Oxford
Credit: Jack Hobhouse

Prof. J. C. Seamus Davis

Professor of Physics

Research theme

  • Fields, strings, and quantum dynamics
  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Macroscopic Quantum Matter
seamus.davis@physics.ox.ac.uk
Telephone: +353830392937
Clarendon Laboratory, room 512.40.28
davis-group-quantum-matter-research.ie
  • About
  • Publications

Odd-parity quasiparticle interference in the superconductive surface state of UTe2

Nature Physics Springer Nature (2025) 1-8

Authors:

Shuqiu Wang, Kuanysh Zhussupbekov, Joseph P Carroll, Bin Hu, Xiaolong Liu, Emile Pangburn, Adeline Crepieux, Catherine Pepin, Christopher Broyles, Sheng Ran, Nicholas P Butch, Shanta Saha, Johnpierre Paglione, Cristina Bena, JC Séamus Davis, Qiangqiang Gu

Abstract:

Although no known material exhibits intrinsic topological superconductivity, where a spin-triplet electron pairing potential has odd parity, UTe2 is now the leading candidate. Generally, the parity of a superconducting order parameter can be established using Bogoliubov quasiparticle interference imaging. However, odd-parity superconductors should support a topological quasiparticle surface band at energies within the maximum superconducting energy gap. Quasiparticle interference should then be dominated by the electronic structure of the quasiparticle surface band and only reveal the characteristics of the bulk order parameter indirectly. Here we demonstrate that at the (0–11) cleave surface of UTe2, a band of Bogoliubov quasiparticles appears only in the superconducting state. Performing high-resolution quasiparticle interference measurements then allows us to explore the dispersion of states in this superconductive surface band, showing that they exist only within the range of Fermi momenta projected onto the (0–11) surface. Finally, we develop a theoretical framework to predict the quasiparticle interference signatures of this surface band at the (0–11) surface. Its predictions are consistent with the experimental results if the bulk superconducting order parameter exhibits time-reversal conserving, odd-parity, a-axis nodal, B3u symmetry.
More details from the publisher
More details

Pair wave function symmetry in UTe2 from zero-energy surface state visualization

Science American Association for the Advancement of Science 388:6750 (2025) 938-944

Authors:

Qiangqiang Gu, Shuqiu Wang, Joseph P Carroll, Kuanysh Zhussupbekov, Christopher Broyles, Sheng Ran, Nicholas P Butch, Jarryd A Horn, Shanta Saha, Johnpierre Paglione, Xiaolong Liu, JC Séamus Davis, Dung-Hai Lee

Abstract:

Although nodal spin-triplet topological superconductivity appears probable in uranium ditelluride (UTe2), its superconductive order parameter Δk remains unestablished. In theory, a distinctive identifier would be the existence of a superconductive topological surface band, which could facilitate zero-energy Andreev tunneling to an s-wave superconductor and also distinguish a chiral from a nonchiral Δk through enhanced s-wave proximity. In this study, we used s-wave superconductive scan tips and detected intense zero-energy Andreev conductance at the UTe2 (0-11) termination surface. Imaging revealed subgap quasiparticle scattering interference signatures with a-axis orientation. The observed zero-energy Andreev peak splitting with enhanced s-wave proximity signifies that Δk of UTe2 is a nonchiral state: B1u, B2u, or B3u. However, if the quasiparticle scattering along the a axis is internodal, then a nonchiral B3u state is the most consistent for UTe2.

More details from the publisher
Details from ORA
More details
More details

Spiral spin liquid noise

Proceedings of the National Academy of Sciences National Academy of Sciences 122:12 (2025) e2422498122

Authors:

Hiroto Takahashi, Chun-Chih Hsu, Fabian Jerzembeck, Jack Murphy, Jonathan Ward, Jack D Enright, Jan Knapp, Pascal Puphal, Masahiko Isobe, Yosuke Matsumoto, Hidenori Takagi, JC Séamus Davis, Stephen J Blundell

Abstract:

An emerging concept for identification of different types of spin liquids [C. Broholm et al., Science 367, eaay0668 (2020)] is through the use of spontaneous spin noise [S. Chatterjee, J. F. Rodriguez-Nieva, E. Demler, Phys. Rev. B 99, 104425 (2019)]. Here, we develop spin noise spectroscopy for spin liquid studies by considering Ca10Cr7O28, a material hypothesized to be either a quantum or a spiral spin liquid (SSL). By enhancing techniques introduced for magnetic monopole noise studies [R. Dusad et al., Nature 571, 234–239 (2019)], we measure the time and temperature dependence of spontaneous flux Φ(t, T) and thus magnetization M(t, T) of Ca10Cr7O28 samples. The resulting power spectral density of magnetization noise SMω, T reveals intense spin fluctuations with SMω, T∝ω-α(T) and 0.84
More details from the publisher
Details from ORA
More details
More details

Dichotomous dynamics of magnetic monopole fluids

Proceedings of the National Academy of Sciences National Academy of Sciences 121:21 (2024) e2320384121

Authors:

Chun-Chih Hsu, Hiroto Takahashi, Fabian Jerzembeck, Jahnatta Dasini, Chaia Carroll, Ritika Dusad, Jonathan Ward, Catherine Dawson, Sudarshan Sharma, Graeme M Luke, Stephen J Blundell, Claudio Castelnovo, Jonathan N Hallén, Roderich Moessner, JC Séamus Davis

Abstract:

A recent advance in the study of emergent magnetic monopoles was the discovery that monopole motion is restricted to dynamical fractal trajectories [J. N. Hallén et al., Science 378, 1218 (2022)], thus explaining the characteristics of magnetic monopole noise spectra [R. Dusad et al., Nature 571, 234 (2019); A. M. Samarakoon et al., Proc. Natl. Acad. Sci. U.S.A. 119, e2117453119 (2022)]. Here, we apply this novel theory to explore the dynamics of field-driven monopole currents, finding them composed of two quite distinct transport processes: initially swift fractal rearrangements of local monopole configurations followed by conventional monopole diffusion. This theory also predicts a characteristic frequency dependence of the dissipative loss angle for AC field–driven currents. To explore these novel perspectives on monopole transport, we introduce simultaneous monopole current control and measurement techniques using SQUID-based monopole current sensors. For the canonical material Dy2Ti2O7, we measure Φ(t), the time dependence of magnetic flux threading the sample when a net monopole current J(t) = Φ̇ (t)∕0 is generated by applying an external magnetic field B0(t). These experiments find a sharp dichotomy of monopole currents, separated by their distinct relaxation time constants before and after t ~600 μs from monopole current initiation. Application of sinusoidal magnetic fields B0(t) = Bcos(t) generates oscillating monopole currents whose loss angle ( f ) exhibits a characteristic transition at frequency f ≈ 1.8 kHz over the same temperature range. Finally, the magnetic noise power is also dichotomic, diminishing sharply after t ~600 μs. This complex phenomenology represents an unprecedented form of dynamical heterogeneity generated by the interplay of fractionalization and local spin configurational symmetry.
More details from the publisher
Details from ORA
More details
More details

Discovery of orbital ordering in Bi2Sr2CaCu2O8+x

Nature Materials Springer Nature 23:4 (2024) 492-498

Authors:

Shuqiu Wang, Niall Kennedy, Kazuhiro Fujita, Shin-ichi Uchida, Hiroshi Eisaki, Peter D Johnson, JC Séamus Davis, Shane M O’Mahony
More details from the publisher
More details
More details

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet