Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Beecroft building, Department of Physics, University of Oxford
Credit: Jack Hobhouse

Prof. J. C. Seamus Davis

Professor of Physics

Research theme

  • Fields, strings, and quantum dynamics
  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Macroscopic Quantum Matter
seamus.davis@physics.ox.ac.uk
Telephone: +353830392937
Clarendon Laboratory, room 512.40.28
davis-group-quantum-matter-research.ie
  • About
  • Publications

Phase diagram of Bi2Sr2CaCu2O8+δ revisited.

Nature communications 9:1 (2018) 5210

Authors:

IK Drozdov, I Pletikosić, C-K Kim, K Fujita, GD Gu, JC Séamus Davis, PD Johnson, I Božović, T Valla

Abstract:

In cuprate superconductors, the doping of carriers into the parent Mott insulator induces superconductivity and various other phases whose characteristic temperatures are typically plotted versus the doping level p. In most materials, p cannot be determined from the chemical composition, but it is derived from the superconducting transition temperature, Tc, using the assumption that the Tc dependence on doping is universal. Here, we present angle-resolved photoemission studies of Bi2Sr2CaCu2O8+δ, cleaved and annealed in vacuum or in ozone to reduce or increase the doping from the initial value corresponding to Tc = 91 K. We show that p can be determined from the underlying Fermi surfaces and that in-situ annealing allows mapping of a wide doping regime, covering the superconducting dome and the non-superconducting phase on the overdoped side. Our results show a surprisingly smooth dependence of the inferred Fermi surface with doping. In the highly overdoped regime, the superconducting gap approaches the value of 2Δ0 = (4 ± 1)kBTc.
More details from the publisher
More details

Imaging orbital-selective quasiparticles in the Hund's metal state of FeSe.

Nature materials 17:10 (2018) 869-874

Authors:

A Kostin, PO Sprau, A Kreisel, Yi Xue Chong, AE Böhmer, PC Canfield, PJ Hirschfeld, BM Andersen, JC Séamus Davis

Abstract:

Strong electronic correlations, emerging from the parent Mott insulator phase, are key to copper-based high-temperature superconductivity. By contrast, the parent phase of an iron-based high-temperature superconductor is never a correlated insulator. However, this distinction may be deceptive because Fe has five actived d orbitals while Cu has only one. In theory, such orbital multiplicity can generate a Hund's metal state, in which alignment of the Fe spins suppresses inter-orbital fluctuations, producing orbitally selective strong correlations. The spectral weights Zm of quasiparticles associated with different Fe orbitals m should then be radically different. Here we use quasiparticle scattering interference resolved by orbital content to explore these predictions in FeSe. Signatures of strong, orbitally selective differences of quasiparticle Zm appear on all detectable bands over a wide energy range. Further, the quasiparticle interference amplitudes reveal that [Formula: see text], consistent with earlier orbital-selective Cooper pairing studies. Thus, orbital-selective strong correlations dominate the parent state of iron-based high-temperature superconductivity in FeSe.
More details from the publisher
More details

Pair density waves in superconducting vortex halos

PHYSICAL REVIEW B 97:17 (2018) ARTN 174510

Authors:

Yuxuan Wang, Stephen D Edkins, Mohammad H Hamidian, JC Seamus Davis, Eduardo Fradkin, Steven A Kivelson
More details from the publisher
More details

In-situ angle-resolved photoemission spectroscopy of copper-oxide thin films synthesized by molecular beam epitaxy

Journal of Electron Spectroscopy and Related Phenomena (2018)

Authors:

CK Kim, IK Drozdov, K Fujita, JCS Davis, I Božović, T Valla

Abstract:

© 2018 Elsevier B.V. Angle-resolved photoemission spectroscopy (ARPES) is the key momentum-resolved technique for direct probing of the electronic structure of a material. However, since it is highly surface-sensitive, it has been applied to a relatively small set of complex oxides that can be easily cleaved in ultra-high vacuum. Here we describe a new multi-module system at Brookhaven National Laboratory (BNL) in which an oxide molecular beam epitaxy (OMBE) is interconnected with an ARPES and a spectroscopic-imaging scanning tunneling microscopy (SI-STM) module. This new capability largely expands the range of complex-oxide materials and artificial heterostructures accessible to these two most powerful and complementary techniques for studies of electronic structure of materials. We also present the first experimental results obtained using this system — the ARPES studies of electronic band structure of a La2-xSrxCuO4 (LSCO) thin film grown by OMBE.
More details from the publisher

Orbital superconductivity, defects, and pinned nematic fluctuations in the doped iron chalcogenide FeSe0.45Te0.55

Physical Review B 96:6 (2017)

Authors:

S Sarkar, J Van Dyke, PO Sprau, F Massee, U Welp, WK Kwok, JCS Davis, DK Morr

Abstract:

© 2017 American Physical Society. We demonstrate that the differential conductance, dI/dV, measured via spectroscopic imaging scanning tunneling microscopy in the doped iron chalcogenide FeSe0.45Te0.55, possesses a series of characteristic features that allow one to extract the orbital structure of the superconducting gaps. This yields nearly isotropic superconducting gaps on the two holelike Fermi surfaces, and a strongly anisotropic gap on the electronlike Fermi surface. Moreover, we show that the pinning of nematic fluctuations by defects can give rise to a dumbbell-like spatial structure of the induced impurity bound states, and explains the related C2 symmetry in the Fourier transformed differential conductance.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Current page 6
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet