Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Beecroft building, Department of Physics, University of Oxford
Credit: Jack Hobhouse

Prof. J. C. Seamus Davis

Professor of Physics

Research theme

  • Fields, strings, and quantum dynamics
  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Macroscopic Quantum Matter
seamus.davis@physics.ox.ac.uk
Telephone: +353830392937
Clarendon Laboratory, room 512.40.28
davis-group-quantum-matter-research.ie
  • About
  • Publications

Interplay of hidden orbital order and superconductivity in CeCoIn5.

Nature communications 14:1 (2023) 2984

Authors:

Weijiong Chen, Clara Neerup Breiø, Freek Massee, Milan P Allan, Cedomir Petrovic, JC Séamus Davis, Peter J Hirschfeld, Brian M Andersen, Andreas Kreisel

Abstract:

Visualizing atomic-orbital degrees of freedom is a frontier challenge in scanned microscopy. Some types of orbital order are virtually imperceptible to normal scattering techniques because they do not reduce the overall crystal lattice symmetry. A good example is dxz/dyz (π,π) orbital order in tetragonal lattices. For enhanced detectability, here we consider the quasiparticle scattering interference (QPI) signature of such (π,π) orbital order in both normal and superconducting phases. The theory reveals that sublattice-specific QPI signatures generated by the orbital order should emerge strongly in the superconducting phase. Sublattice-resolved QPI visualization in superconducting CeCoIn5 then reveals two orthogonal QPI patterns at lattice-substitutional impurity atoms. We analyze the energy dependence of these two orthogonal QPI patterns and find the intensity peaked near E = 0, as predicted when such (π,π) orbital order is intertwined with d-wave superconductivity. Sublattice-resolved superconductive QPI techniques thus represent a new approach for study of hidden orbital order.
More details from the publisher
More details
More details

Visualizing the atomic-scale origin of metallic behavior in Kondo insulators

Science American Association for the Advancement of Science 379:6638 (2023) 1214-1218

Authors:

Harris Pirie, Eric Mascot, Christian E Matt, Yu Liu, Pengcheng Chen, Mh Hamidian, Shanta Saha, Xiangfeng Wang, Johnpierre Paglione, Graeme Luke, David Goldhaber-Gordon, Cyrus F Hirjibehedin, JC Séamus Davis, Dirk K Morr, Jennifer E Hoffman

Abstract:

A Kondo lattice is often electrically insulating at low temperatures. However, several recent experiments have detected signatures of bulk metallicity within this Kondo insulating phase. In this study, we visualized the real-space charge landscape within a Kondo lattice with atomic resolution using a scanning tunneling microscope. We discovered nanometer-scale puddles of metallic conduction electrons centered around uranium-site substitutions in the heavy-fermion compound uranium ruthenium silicide (URu2Si2) and around samarium-site defects in the topological Kondo insulator samarium hexaboride (SmB6). These defects disturbed the Kondo screening cloud, leaving behind a fingerprint of the metallic parent state. Our results suggest that the three-dimensional quantum oscillations measured in SmB6 arise from Kondo-lattice defects, although we cannot exclude other explanations. Our imaging technique could enable the development of atomic-scale charge sensors using heavy-fermion probes.

More details from the publisher
Details from ORA
More details
More details

On the electron pairing mechanism of copper-oxide high temperature superconductivity.

Proceedings of the National Academy of Sciences of the United States of America 119:37 (2022) e2207449119

Authors:

Shane M O'Mahony, Wangping Ren, Weijiong Chen, Yi Xue Chong, Xiaolong Liu, H Eisaki, S Uchida, MH Hamidian, JC Séamus Davis

Abstract:

The elementary CuO2 plane sustaining cuprate high-temperature superconductivity occurs typically at the base of a periodic array of edge-sharing CuO5 pyramids. Virtual transitions of electrons between adjacent planar Cu and O atoms, occurring at a rate t/ℏ and across the charge-transfer energy gap [Formula: see text], generate "superexchange" spin-spin interactions of energy [Formula: see text] in an antiferromagnetic correlated-insulator state. However, hole doping this CuO2 plane converts this into a very-high-temperature superconducting state whose electron pairing is exceptional. A leading proposal for the mechanism of this intense electron pairing is that, while hole doping destroys magnetic order, it preserves pair-forming superexchange interactions governed by the charge-transfer energy scale [Formula: see text]. To explore this hypothesis directly at atomic scale, we combine single-electron and electron-pair (Josephson) scanning tunneling microscopy to visualize the interplay of [Formula: see text] and the electron-pair density nP in Bi2Sr2CaCu2O8+x. The responses of both [Formula: see text] and nP to alterations in the distance δ between planar Cu and apical O atoms are then determined. These data reveal the empirical crux of strongly correlated superconductivity in CuO2, the response of the electron-pair condensate to varying the charge-transfer energy. Concurrence of predictions from strong-correlation theory for hole-doped charge-transfer insulators with these observations indicates that charge-transfer superexchange is the electron-pairing mechanism of superconductive Bi2Sr2CaCu2O8+x.
More details from the publisher
More details
More details
More details

Identification of a nematic pair density wave state in Bi2Sr2CaCu2O8+x.

Proceedings of the National Academy of Sciences of the United States of America 119:31 (2022) e2206481119

Authors:

Weijiong Chen, Wangping Ren, Niall Kennedy, MH Hamidian, S Uchida, H Eisaki, Peter D Johnson, Shane M O'Mahony, JC Séamus Davis

Abstract:

Electron-pair density wave (PDW) states are now an intense focus of research in the field of cuprate correlated superconductivity. PDWs exhibit periodically modulating superconductive electron pairing that can be visualized directly using scanned Josephson tunneling microscopy (SJTM). Although from theory, intertwining the d-wave superconducting (DSC) and PDW order parameters allows a plethora of global electron-pair orders to appear, which one actually occurs in the various cuprates is unknown. Here, we use SJTM to visualize the interplay of PDW and DSC states in Bi2Sr2CaCu2O8+x at a carrier density where the charge density wave modulations are virtually nonexistent. Simultaneous visualization of their amplitudes reveals that the intertwined PDW and DSC are mutually attractive states. Then, by separately imaging the electron-pair density modulations of the two orthogonal PDWs, we discover a robust nematic PDW state. Its spatial arrangement entails Ising domains of opposite nematicity, each consisting primarily of unidirectional and lattice commensurate electron-pair density modulations. Further, we demonstrate by direct imaging that the scattering resonances identifying Zn impurity atom sites occur predominantly within boundaries between these domains. This implies that the nematic PDW state is pinned by Zn atoms, as was recently proposed [Lozano et al., Phys. Rev. B 103, L020502 (2021)]. Taken in combination, these data indicate that the PDW in Bi2Sr2CaCu2O8+x is a vestigial nematic pair density wave state [Agterberg et al. Phys. Rev. B 91, 054502 (2015); Wardh and Granath arXiv:2203.08250].
More details from the publisher
More details
More details

Atomic-scale visualization of electronic fluid flow.

Nature materials 20:11 (2021) 1480-1484

Authors:

Xiaolong Liu, Yi Xue Chong, Rahul Sharma, JC Séamus Davis

Abstract:

The most essential characteristic of any fluid is the velocity field, and this is particularly true for macroscopic quantum fluids1. Although rapid advances2-7 have occurred in quantum fluid velocity field imaging8, the velocity field of a charged superfluid-a superconductor-has never been visualized. Here we use superconducting-tip scanning tunnelling microscopy9-11 to image the electron-pair density and velocity fields of the flowing electron-pair fluid in superconducting NbSe2. Imaging of the velocity fields surrounding a quantized vortex12,13 finds electronic fluid flow with speeds reaching 10,000 km h-1. Together with independent imaging of the electron-pair density via Josephson tunnelling, we visualize the supercurrent density, which peaks above 3 × 107 A cm-2. The spatial patterns in electronic fluid flow and magneto-hydrodynamics reveal hexagonal structures coaligned to the crystal lattice and quasiparticle bound states14, as long anticipated15-18. These techniques pave the way for electronic fluid flow visualization studies of other charged quantum fluids.
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet