Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Julien Devriendt

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics
  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Cosmology
  • Galaxy formation and evolution
julien.devriendt@physics.ox.ac.uk
Telephone: 01865 (2)73307
Denys Wilkinson Building, room 555D
  • About
  • Teaching
  • Publications

MoMaF : The Mock Map Facility

(2003)

Authors:

J Blaizot, Y Wadadekar, B Guiderdoni, S Colombi, E Bertin, FR Bouchet, JEG Devriendt, S Hatton
More details from the publisher

Turbulent Ambipolar Diffusion: Numerical Studies in 2D

ArXiv astro-ph/0309306 (2003)

Authors:

F Heitsch, EG Zweibel, AD Slyz, JEG Devriendt

Abstract:

Under ideal MHD conditions the magnetic field strength should be correlated with density in the interstellar medium (ISM). However, observations indicate that this correlation is weak. Ambipolar diffusion can decrease the flux-to-mass ratio in weakly ionized media; however, it is generally thought to be too slow to play a significant role in the ISM except in the densest molecular clouds. Turbulence is often invoked in astrophysical problems to increase transport rates above the (very slow) laminar values predicted by kinetic theory. We describe a series of numerical experiments addressing the problem of turbulent transport of magnetic fields in weakly ionized gases. We show, subject to various geometrical and physical restrictions, that turbulence in a weakly ionized medium rapidly diffuses the magnetic flux to mass ratio through the buildup of appreciable ion-neutral drifts on small scales. These results are applicable to the fieldstrength - density correlation in the ISM, as well as the merging of flux systems such as protostar and accretion disk fields or protostellar jets with ambient matter, and the vertical transport of galactic magnetic fields.
Details from ArXiV
More details from the publisher
Details from ORA
More details

Turbulent Ambipolar Diffusion: Numerical Studies in 2D

(2003)

Authors:

F Heitsch, EG Zweibel, AD Slyz, JEG Devriendt
More details from the publisher

GALICS I: A hybrid N-body semi-analytic model of hierarchical galaxy formation

ArXiv astro-ph/0309186 (2003)

Authors:

Steve Hatton, Julien EG Devriendt, Stephane Ninin, Francois R Bouchet, Bruno Guiderdoni, Didier Vibert

Abstract:

This is the first paper of a series that describes the methods and basic results of the GalICS model (for Galaxies In Cosmological Simulations). GalICS is a hybrid model for hierarchical galaxy formation studies, combining the outputs of large cosmological N-body simulations with simple, semi-analytic recipes to describe the fate of the baryons within dark matter halos. The simulations produce a detailed merging tree for the dark matter halos including complete knowledge of the statistical properties arising from the gravitational forces. We intend to predict the overall statistical properties of galaxies, with special emphasis on the panchromatic spectral energy distribution emitted by galaxies in the UV/optical and IR/submm wavelength ranges. In this paper, we outline the physically motivated assumptions and key free parameters that go into the model, comparing and contrasting with other parallel efforts. We specifically illustrate the success of the model in comparison to several datasets, showing how it is able to predict the galaxy disc sizes, colours, luminosity functions from the ultraviolet to far infrared, the Tully--Fisher and Faber--Jackson relations, and the fundamental plane in the local universe. We also identify certain areas where the model fails, or where the assumptions needed to succeed are at odds with observations, and pay special attention to understanding the effects of the finite resolution of the simulations on the predictions made. Other papers in this series will take advantage of different data sets available in the literature to extend the study of the limitations and predictive power of GalICS, with particular emphasis put on high-redshift galaxies.
Details from ArXiV
More details from the publisher
Details from ORA
More details

GALICS I: A hybrid N-body semi-analytic model of hierarchical galaxy formation

(2003)

Authors:

Steve Hatton, Julien EG Devriendt, Stephane Ninin, Francois R Bouchet, Bruno Guiderdoni, Didier Vibert
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 82
  • Page 83
  • Page 84
  • Page 85
  • Current page 86
  • Page 87
  • Page 88
  • Page 89
  • Page 90
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet