Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Julien Devriendt

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics
  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Cosmology
  • Galaxy formation and evolution
julien.devriendt@physics.ox.ac.uk
Telephone: 01865 (2)73307
Denys Wilkinson Building, room 555D
  • About
  • Teaching
  • Publications

Star formation in a multi-phase interstellar medium

Astrophysics and Space Science 284:2 (2003) 833-836

Authors:

A Slyz, J Devriendt, G Bryan, J Silk

Abstract:

This contribution reports on our first efforts to simulate a multiphase interstellar medium on a kiloparsec scale in three dimensions with the stars and gas modeled self-consistently. Starting from inhomogenous initial conditions, our closed box simulations follow the gas as it cools and collapses under its own self-gravity to form stars which eventually return material and energy back through supernovae explosions and winds.
More details from the publisher
More details

Top-down fragmentation of a warm dark matter filament

Monthly Notices of the Royal Astronomical Society 345:4 (2003) 1285-1290

Authors:

A Knebe, JEG Devriendt, BK Gibson, J Silk

Abstract:

We present the first high-resolution N-body simulations of the fragmentation of dark matter filaments. Such fragmentation occurs in top-down scenarios of structure formation, when the dark matter is warm instead of cold. In a previous paper, we showed that warm dark matter (WDM) differs from the standard cold dark matter (CDM) mainly in the formation history and large-scale distribution of low-mass haloes, which form later and tend to be more clustered in WDM than in CDM universes, tracing the filamentary structures of the cosmic web more closely. Therefore, we focus our computational effort in this paper on one particular filament extracted from a WDM cosmological simulation and compare in detail its evolution to that of the same CDM filament. We find that the mass distribution of the haloes forming via fragmentation within the filament is broadly peaked around a Jeans mass of a few 109 M ⊙, corresponding to a gravitational instability of smooth regions with an overdensity contrast around 10 at these redshifts. Our results confirm that WDM filaments fragment and form gravitationally bound haloes in a top-down fashion, whereas CDM filaments are built bottom-up, thus demonstrating the impact of the nature of the dark matter on dwarf galaxy properties.
More details from the publisher
More details

GALICS III: Predicted properties for Lyman Break Galaxies at redshift 3

ArXiv astro-ph/0310071 (2003)

Authors:

J Blaizot, B Guiderdoni, JEG Devriendt, FR Bouchet, S Hatton, F Stoehr

Abstract:

This paper illustrates how mock observational samples of high-redshift galaxies with sophisticated selection criteria can be extracted from the predictions of GALICS, a hybrid model of hierarchical galaxy formation that couples the outputs of large cosmological simulations and semi-analytic recipes to describe dark matter collapse and the physics of baryons respectively. As an example of this method, we focus on the properties of Lyman Break Galaxies at redshift 3. With the MOMAF software package described in a companion paper, we generate a mock observational sample with selection criteria as similar as possible to those implied in the actual observations of z = 3 LBGs by Steidel et al.(1995). Our model predictions are in good agreement with the observed number density and 2D correlation function. We investigate the optical/IR luminosity budget as well as several other physical properties of LBGs and find them to be in general agreement with observed values. Looking into the future of these LBGs we predict that 75% of them end up as massive ellipticals today, even though only 35% of all our local ellipticals are predicted to have a LBG progenitor. In spite of some shortcomings, this new 'mock observation' method clearly represents a necessary first step toward a more accurate comparison between hierarchical models of galaxy formation and real observational surveys.
Details from ArXiV
More details from the publisher
More details

GALICS III: Predicted properties for Lyman Break Galaxies at redshift 3

(2003)

Authors:

J Blaizot, B Guiderdoni, JEG Devriendt, FR Bouchet, S Hatton, F Stoehr
More details from the publisher

MoMaF : The Mock Map Facility

ArXiv astro-ph/0309305 (2003)

Authors:

J Blaizot, Y Wadadekar, B Guiderdoni, S Colombi, E Bertin, FR Bouchet, JEG Devriendt, S Hatton

Abstract:

We present the Mock Map Facility, a powerful tool to generate mock catalogues or images from semi-analytically post-processed snapshots of cosmological N-body simulations. The paper describes in detail an efficient technique to create such mocks from the GALICS semi-analytic model, providing the reader with an accurate quantification of the artifacts it introduces at every step. We show that replication effects introduce a negative bias on the clustering signal -- typically peaking at less than 10 percent around the correlation length. We also thoroughly discuss how the clustering signal is affected by finite volume effects, and show that it vanishes at scales larger than about a tenth of the simulation box size. For the purpose of analysing our method, we show that number counts and redshift distributions obtained with GALICS and MOMAF compare well to K-band observations and to the 2dFGRS. Given finite volume effects, we also show that the model can reproduce the APM angular correlation function. The MOMAF results discussed here are made publicly available to the astronomical community through a public database. Moreover, a user-friendly Web interface (http://galics.iap.fr) allows any user to recover her/his own favourite galaxy samples through simple SQL queries. The flexibility of this tool should permit a variety of uses ranging from extensive comparisons between real observations and those predicted by hierarchical models of galaxy formation, to the preparation of observing strategies for deep surveys and tests of data processing pipelines.
Details from ArXiV
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 81
  • Page 82
  • Page 83
  • Page 84
  • Current page 85
  • Page 86
  • Page 87
  • Page 88
  • Page 89
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet