Non-linear evolution of suppressed dark matter primordial power spectra
Monthly Notices of the Royal Astronomical Society 360:1 (2005) 282-287
Abstract:
We address the degree and rapidity of generation of small-scale power over the course of structure formation in cosmologies where the primordial power spectrum is strongly suppressed beyond a given wavenumber. We first summarize the situations where one expects such suppressed power spectra and point out their diversity. We then employ an exponential cut-off, which characterizes warm dark matter (WDM) models, as a template for the shape of the cut-off and focus on damping scales ranging from 106 to 109 h -1 M⊙. Using high-resolution simulations, we show that the suppressed part of the power spectrum is quickly (re)generated and catches up with both the linear and the non-linear evolution of the unsuppressed power spectrum. From z = 2 onwards, a power spectrum with a primordial cut-off at 109 h-1 MŁódź, becomes virtually indistinguishable from an evolved cold dark matter (CDM) power spectrum. An attractor such as that described in Zaldarriaga, Scoccimarro & Hui for power spectra with different spectral indices also emerges in the case of truncated power spectra. Measurements of z ∼ 0 non-linear power spectra at ∼100 h-1 kpc cannot rule out the possibility of linear power spectra damped below ∼109 h-1 M ⊙. Therefore, WDM or scenarios with similar features should be difficult to exclude in this way. © 2005 RAS.A simple model for the evolution of supermassive black holes and the quasar population
Monthly Notices of the Royal Astronomical Society 359:4 (2005) 1363-1378
GALICS -- VI. Modelling Hierarchical Galaxy Formation in Clusters
ArXiv astro-ph/0502490 (2005)
Abstract:
High-resolution N-body re-simulations of 15 massive (10^{14}-10^{15} Msun) dark matter haloes have been combined with the hybrid galaxy formation model GalICS (Hatton et al. 2003), to study the formation and evolution of galaxies in clusters, within the framework of the hierarchical merging scenario. New features in GalICS include a better description of galaxy positioning within dark matter haloes, a more reliable computation of the temperature of the inter-galactic medium as a function of redshift, and a description of the ram pressure stripping process. We focus on the luminosity functions, morphological fractions and colour distributions of galaxies in clusters and in cluster outskirts, at z=0. No systematic dependency on cluster richness is found either for the galaxy luminosity functions, morphological mixes, or colour distributions. Moving from higher density (cluster cores), to lower density environments (cluster outskirts), we detect a progressive flattening of the luminosity functions, an increase of the fraction of spirals and a decrease of that of ellipticals and S0s, and the progressive emergence of a bluer tail in the distributions of galaxy colours, especially for spirals. As compared to cluster spirals, early-type galaxies show a flatter luminosity function, and more homogeneous and redder colours. An overall good agreement is found between our results and the observations, particularly in terms of the cluster luminosity functions and morphological mixes. However, some discrepancies are also apparent, with too faint magnitudes of the brightest cluster members, especially in the B band, and galaxy colours tendentially too red (or not blue enough) in the model, with respect to the observations. Finally, ram pressure stripping appears to affect very little our results.GALICS -- VI. Modelling Hierarchical Galaxy Formation in Clusters
(2005)