Magnetic flux transport in the ISM through turbulent ambipolar diffusion
ASTROPHYS SPACE SCI 292:1-4 (2004) 45-51
Abstract:
Under ideal MHD conditions the magnetic field strength should be correlated with density in the interstellar medium ( ISM). However, observations indicate that this correlation is weaker than expected. Ambipolar diffusion can decrease the flux-to-mass ratio in weakly ionized media; however, it is generally thought to be too slow to play a significant role in the ISM except in the densest molecular clouds. Turbulence is often invoked in other astrophysical problems to increase transport rates above the ( very slow) diffusive values. Building on analytical studies, we test with numerical models whether turbulence can enhance the ambipolar diffusion rate sufficiently to explain the observed weak correlations. The numerical method is based on a gas-kinetic scheme with very low numerical diffusivity, thus allowing us to separate numerical and physical diffusion effects.The second generation VLT instrument MUSE: Science drivers and instrument design
P SOC PHOTO-OPT INS 5492 (2004) 1145-1149
Abstract:
The Multi Unit Spectroscopic Explorer (MUSE) is a second generation VLT panoramic integral-field spectrograph operating in the visible wavelength range. MUSE has a field of 1x1 arcmin(2) sampled at 0.20.2 arcsec(2) and is assisted by a ground layer adaptive optics system using four laser guide stars. The simultaneous spectral range is 0.465-0.93 mum, at a resolution of Rsimilar to3000. MUSE couples the discovery potential of a large imaging device to the measuring capabilities of a high-quality spectrograph, while taking advantage of the increased spatial resolution provided by adaptive optics. This makes MUSE a unique and tremendously powerful instrument for discovering and characterizing objects that lie beyond the reach of even the deepest imaging surveys. MUSE has also a high spatial resolution mode with 7.5x7.5 arcsec(2) field of view sampled at 25 milli-arcsec. In this mode MUSE should be able to get diffraction limited data-cube in the 0.6-1 mum wavelength range. Although MUSE design has been optimized for the study of galaxy formation and evolution, it has a wide range of possible applications; e.g. monitoring of outer planets atmosphere, young stellar objects environment, supermassive black holes and active nuclei in nearby galaxies or massive spectroscopic survey of stellar fields.Turbulent ambipolar diffusion: Numerical studies in two dimensions
ASTROPHYSICAL JOURNAL 603:1 (2004) 165-179
GALICS: A direct link between theory and observations
Astrophysics and Space Science 284:2 (2003) 369-372
Abstract:
This contribution advocates anew method for comparing theoretical predictions to observations. Properties of virtual galaxies are computed using the hybrid model for hierarchical galaxy formation GALICS (for Galaxies In Cosmological Simulations), which takes advantage of large cosmological N-body simulations to plug in simple semi-analytic recipes describing the fate of the baryons. From such a fake galaxy catalog, one can build light cones, and project them onto virtual CCD devices, taking into account the technical characteristics of the detector/telescope. As a result, realistic mock images can be produced, which can then be directly compared to real observations.Non-standard structure formation scenarios
Astrophysics and Space Science 284:2 (2003) 335-340