Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Dr Dharmalingam Prabhakaran

Researcher

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Synthesis and crystal growth
dharmalingam.prabhakaran@physics.ox.ac.uk
Telephone: 01865 (2)72270,01865 (2)72351,01865 (2)72341
Clarendon Laboratory, room 177,377,373
  • About
  • Publications

Magnetic monopole density and antiferromagnetic domain control in spin-ice iridates

Nature Communications Springer Nature 13:1 (2022) 444

Authors:

Mj Pearce, K Götze, Attila Szabó, Ts Sikkenk, Mr Lees, Andrew Boothroyd, D Prabhakaran, C Castelnovo, Pa Goddard

Abstract:

Magnetically frustrated systems provide fertile ground for complex behaviour, including unconventional ground states with emergent symmetries, topological properties, and exotic excitations. A canonical example is the emergence of magnetic-charge-carrying quasiparticles in spin-ice compounds. Despite extensive work, a reliable experimental indicator of the density of these magnetic monopoles is yet to be found. Using measurements on single crystals of Ho2Ir2O7 combined with dipolar Monte Carlo simulations, we show that the isothermal magnetoresistance is highly sensitive to the monopole density. Moreover, we uncover an unexpected and strong coupling between the monopoles on the holmium sublattice and the antiferromagnetically ordered iridium ions. These results pave the way towards a quantitative experimental measure of monopole density and demonstrate the ability to control antiferromagnetic domain walls using a uniform external magnetic field, a key goal in the design of next-generation spintronic devices.
More details from the publisher
Details from ORA
More details
More details

Multi-mode excitation drives disorder during the ultrafast melting of a C4-symmetry-broken phase.

Nature communications 13:1 (2022) 238

Authors:

Daniel Perez-Salinas, Allan S Johnson, Dharmalingam Prabhakaran, Simon Wall

Abstract:

Spontaneous C4-symmetry breaking phases are ubiquitous in layered quantum materials, and often compete with other phases such as superconductivity. Preferential suppression of the symmetry broken phases by light has been used to explain non-equilibrium light induced superconductivity, metallicity, and the creation of metastable states. Key to understanding how these phases emerge is understanding how C4 symmetry is restored. A leading approach is based on time-dependent Ginzburg-Landau theory, which explains the coherence response seen in many systems. However, we show that, for the case of the single layered manganite La0.5Sr1.5MnO4, the theory fails. Instead, we find an ultrafast inhomogeneous disordering transition in which the mean-field order parameter no longer reflects the atomic-scale state of the system. Our results suggest that disorder may be common to light-induced phase transitions, and methods beyond the mean-field are necessary for understanding and manipulating photoinduced phases.
More details from the publisher
More details
More details

Real space imaging of spin stripe domain fluctuations in a complex oxide

Physical Review Letters American Physical Society 127:27 (2021) 275301

Authors:

Longlong Wu, Yao Shen, Andi M Barbour, Wei Wang, Dharmalingam Prabhakaran, Andrew T Boothroyd, Claudio Mazzoli, John M Tranquada, Mark PM Dean, Ian K Robinson

Abstract:

Understanding the formation and dynamics of charge and spin-ordered states in low-dimensional transition metal oxide materials is crucial to understanding unconventional high-temperature superconductivity. La 2 − x Sr x NiO 4 + δ (LSNO) has attracted much attention due to its interesting spin dynamics. Recent x-ray photon correlation spectroscopy studies have revealed slow dynamics of the spin order (SO) stripes in LSNO. Here, we applied resonant soft x-ray ptychography to map the spatial distribution of the SO stripe domain inhomogeneity in real space. The reconstructed images show the SO domains are spatially anisotropic, in agreement with previous diffraction studies. For the SO stripe domains, it is found that the correlation lengths along different directions are strongly coupled in space. Surprisingly, fluctuations were observed in the real space amplitude signal, rather than the phase or position. We attribute the observed slow dynamics of the stripe domains in LSNO to thermal fluctuations of the SO domain boundaries.
More details from the publisher
Details from ORA
More details
More details

Tracking electron and hole dynamics in 3D dirac semimetals

Proceedings of the 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2021) IEEE (2021)

Authors:

Jl Boland, Da Damry, Cq Xia, M Filip, P Schönherr, T Hesjedal, D Prabhakaran, Lm Herz, Mb Johnston

Abstract:

Using ultrafast optical-pump terahertz-probe spectroscopy (OPTP) and ultrafast terahertz emission spectroscopy, we showcase the electron and hole dynamics in Cd3As2 nanowires (NWs), a well-known 3D Dirac semimetal a subgroup of the newly discovered . A temperature-dependent photoconductivity measurement was carried out yielding an incredibly high electron mobility ~ 16,000 cm2/Vs at 5K. Strong THz emission due to helicity-dependent surface photocurrents was also observed for both nanowires and single crystal (SC) which is highly desirable for devices such as THz sources.
More details from the publisher
Details from ORA
More details

Experimental measurement of the isolated magnetic susceptibility

Physical Review B American Physical Society 104 (2021) 014418

Authors:

D Billington, C Paulsen, E Lhotel, J Cannon, E Riordan, M Salman, G Klemencic, C Cafolla-Ward, D Prabhakaran, Sr Giblin, St Bramwell

Abstract:

The isolated susceptibility may be defined as a (nonthermodynamic) average over the canonical ensemble, but while it has often been discussed in the literature, it has not been clearly measured. Here, we demonstrate an unambiguous measurement of at avoided nuclear-electronic level crossings in a dilute spin ice system, containing well-separated holmium ions. We show that quantifies the superposition of quasiclassical spin states at these points and is a direct measure of state concurrence and populations.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Current page 8
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet