Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Dr Dharmalingam Prabhakaran

Researcher

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Synthesis and crystal growth
dharmalingam.prabhakaran@physics.ox.ac.uk
Telephone: 01865 (2)72270,01865 (2)72351,01865 (2)72341
Clarendon Laboratory, room 177,377,373
  • About
  • Publications

Topological materials as promising candidates for tuneable helicity-dependent terahertz emitters

Proceedings of SPIE: Terahertz Emitters, Receivers, and Applications XIV Society of Photo-optical Instrumentation Engineers 12683 (2023)

Authors:

Jessica L Boland, Djamshid A Damry, Chelsea Q Xia, Yahya Saboon, Abdul Mannan, Piet Schönherr, Dharmalingam Prabhakaran, Laura M Herz, Thorsten Hesjedal, Michael B Johnston

Abstract:

Topological materials have rapidly gained interest as contenders for development of coherent, controllable terahertz emitters. Possessing Weyl nodes either at the surface or within the bulk, they host spin-polarised, helicity-dependent currents that offer possibility to control the emitted THz pulse by changing the polarization of the optical pulses generating the radiation. Here, we show that upon near-infrared excitation at oblique incidence, multi-cycle pulses are generated with a narrow bandwidth of ∼0.4 THz for cadmium arsenide bulk crystals and nanowire ensembles. Both the bandwidth and peak emission frequency of the generated THz radiation can be tuned by respectively varying the photon helicity and angle of incidence of the photoexcitation light.
More details from the publisher
Details from ORA

Capturing dynamical correlations using implicit neural representations.

Nature communications 14:1 (2023) 5852

Authors:

Sathya R Chitturi, Zhurun Ji, Alexander N Petsch, Cheng Peng, Zhantao Chen, Rajan Plumley, Mike Dunne, Sougata Mardanya, Sugata Chowdhury, Hongwei Chen, Arun Bansil, Adrian Feiguin, Alexander I Kolesnikov, Dharmalingam Prabhakaran, Stephen M Hayden, Daniel Ratner, Chunjing Jia, Youssef Nashed, Joshua J Turner

Abstract:

Understanding the nature and origin of collective excitations in materials is of fundamental importance for unraveling the underlying physics of a many-body system. Excitation spectra are usually obtained by measuring the dynamical structure factor, S(Q, ω), using inelastic neutron or x-ray scattering techniques and are analyzed by comparing the experimental results against calculated predictions. We introduce a data-driven analysis tool which leverages 'neural implicit representations' that are specifically tailored for handling spectrographic measurements and are able to efficiently obtain unknown parameters from experimental data via automatic differentiation. In this work, we employ linear spin wave theory simulations to train a machine learning platform, enabling precise exchange parameter extraction from inelastic neutron scattering data on the square-lattice spin-1 antiferromagnet La2NiO4, showcasing a viable pathway towards automatic refinement of advanced models for ordered magnetic systems.
More details from the publisher
More details
More details

High-energy spin waves in the spin-1 square-lattice antiferromagnet La2NiO4

Physical Review Research American Physical Society 5:3 (2023) 033113

Authors:

An Petsch, Ns Headings, D Prabhakaran, Ai Kolesnikov, Cd Frost, At Boothroyd, R Coldea, Sm Hayden

Abstract:

Inelastic neutron scattering is used to study the magnetic excitations of the S=1 square-lattice antiferromagnet La2NiO4. We find that the spin waves cannot be described by a simple classical (harmonic) Heisenberg model with only nearest-neighbor interactions. The spin-wave dispersion measured along the antiferromagnetic Brillouin-zone boundary shows a minimum energy at the (1/2,0) position as is observed in some S=1/2 square-lattice antiferromagnets. Thus, our results suggest that the quantum dispersion renormalization effects or longer-range exchange interactions observed in cuprates and other S =1/2 square-lattice antiferromagnets are also present in La2NiO4. We also find that the overall intensity of the spin-wave excitations is suppressed relative to linear spin-wave theory, indicating that covalency is important. Two-magnon scattering is also observed.

More details from the publisher
Details from ORA
More details

Understanding unconventional magnetic order in a candidate axion insulator by resonant elastic x-ray scattering

Nature Communications Springer Nature 14:1 (2023) 3387

Authors:

Jian-Rui Soh, Alessandro Bombardi, Frédéric Mila, Marein C Rahn, Dharmalingam Prabhakaran, Sonia Francoual, Henrik M Rønnow, Andrew Boothroyd

Abstract:

Magnetic topological insulators and semimetals are a class of crystalline solids whose properties are strongly influenced by the coupling between non-trivial electronic topology and magnetic spin configurations. Such materials can host exotic electromagnetic responses. Among these are topological insulators with certain types of antiferromagnetic order which are predicted to realize axion electrodynamics. Here we investigate the highly unusual helimagnetic phases recently reported in EuIn2As2, which has been identified as a candidate for an axion insulator. Using resonant elastic x-ray scattering we show that the two types of magnetic order observed in EuIn2As2 are spatially uniform phases with commensurate chiral magnetic structures, ruling out a possible phase-separation scenario, and we propose that entropy associated with low energy spin fluctuations plays a significant role in driving the phase transition between them. Our results establish that the magnetic order in EuIn2As2 satisfies the symmetry requirements for an axion insulator.
More details from the publisher
Details from ORA
More details
More details

The effect of magnetic order on longitudinal Tomonaga-Luttinger liquid spin dynamics in weakly coupled spin-1 2 chains

Physical Review B American Physical Society 107 (2023) 134425

Authors:

L Shen, A Alshemi, E Campillo, E Blackburn, P Steffens, M Boehm, Dharmalingam Prabhakaran, Andrew Boothroyd

Abstract:

The quantum many-body interactions in one-dimensional spin- 1 2 systems are subject to Tomonaga-Luttinger liquid (TLL) physics, which predict an array of multi-particle excitations that form continua in momentum-energy space. Here we use inelastic neutron spectroscopy to study the TLL spin dynamics in SrCo2V2O8, a compound which contains weakly coupled spin- 1 2 chains of Co atoms, at 0.05 K and in a longitudinal magnetic field up to 9.0 T. The measurements were performed above 3.9 T, where the ground state N´eel antiferromagnetic (AFM) order is completely suppressed, and the multi-particle excitations are exclusively of TLL type. In this region and below 7.0 T, the longitudinal TLL mode – psinon/antipsinon (P/AP) – is unexpectedly well described by a damped harmonic oscillator (DHO) while approaching the zone center defining the static spin-spin correlations. A non-DHO-type, continuum-like signal is seen at higher fields, but deviations from the ideal one-dimensional TLL still remain. This change in the P/AP mode coincides with the phase transition between the longitudinal spin density wave (LSDW) and transverse AFM order. Inside the LSDW state, the DHO-type P/AP spectral weight increases and the linewidth broadens as the magnetic order parameter decreases. These results reveal the impact of three-dimensional magnetic order on the TLL spin dynamics; they call for beyond the mean-field treatment for the interchain exchange interactions.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Current page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet