Understanding unconventional magnetic order in a candidate axion insulator by resonant elastic x-ray scattering
Nature Communications Springer Nature 14:1 (2023) 3387
Abstract:
Magnetic topological insulators and semimetals are a class of crystalline solids whose properties are strongly influenced by the coupling between non-trivial electronic topology and magnetic spin configurations. Such materials can host exotic electromagnetic responses. Among these are topological insulators with certain types of antiferromagnetic order which are predicted to realize axion electrodynamics. Here we investigate the highly unusual helimagnetic phases recently reported in EuIn2As2, which has been identified as a candidate for an axion insulator. Using resonant elastic x-ray scattering we show that the two types of magnetic order observed in EuIn2As2 are spatially uniform phases with commensurate chiral magnetic structures, ruling out a possible phase-separation scenario, and we propose that entropy associated with low energy spin fluctuations plays a significant role in driving the phase transition between them. Our results establish that the magnetic order in EuIn2As2 satisfies the symmetry requirements for an axion insulator.The effect of magnetic order on longitudinal Tomonaga-Luttinger liquid spin dynamics in weakly coupled spin-1 2 chains
Physical Review B American Physical Society 107 (2023) 134425
Abstract:
The quantum many-body interactions in one-dimensional spin- 1 2 systems are subject to Tomonaga-Luttinger liquid (TLL) physics, which predict an array of multi-particle excitations that form continua in momentum-energy space. Here we use inelastic neutron spectroscopy to study the TLL spin dynamics in SrCo2V2O8, a compound which contains weakly coupled spin- 1 2 chains of Co atoms, at 0.05 K and in a longitudinal magnetic field up to 9.0 T. The measurements were performed above 3.9 T, where the ground state N´eel antiferromagnetic (AFM) order is completely suppressed, and the multi-particle excitations are exclusively of TLL type. In this region and below 7.0 T, the longitudinal TLL mode – psinon/antipsinon (P/AP) – is unexpectedly well described by a damped harmonic oscillator (DHO) while approaching the zone center defining the static spin-spin correlations. A non-DHO-type, continuum-like signal is seen at higher fields, but deviations from the ideal one-dimensional TLL still remain. This change in the P/AP mode coincides with the phase transition between the longitudinal spin density wave (LSDW) and transverse AFM order. Inside the LSDW state, the DHO-type P/AP spectral weight increases and the linewidth broadens as the magnetic order parameter decreases. These results reveal the impact of three-dimensional magnetic order on the TLL spin dynamics; they call for beyond the mean-field treatment for the interchain exchange interactions.Narrowband, angle-tuneable, helicity-dependent terahertz emission from nanowires of the topological Dirac semimetal Cd3As2
ACS Photonics American Chemical Society 10:5 (2023) 1473-1484
Abstract:
All-optical control of terahertz pulses is essential for the development of optoelectronic devices for next-generation quantum technologies. Despite substantial research in THz generation methods, polarisation control remains difficult. Here, we demonstrate that by exploiting bandstructure topology, both helicity-dependent and helicity-independent THz emission can be generated from nanowires of the topological Dirac semimetal Cd3As2. We show that narrowband THz pulses can be generated at oblique incidence by driving the system with optical (1.55 eV) pulses with circular polarisation. Varying the incident angle also provides control of the peak emission frequency, with peak frequencies spanning 0.21 – 1.40 THz as the angle is tuned from 15° - 45°. We therefore present Cd3As2 nanowires as a promising novel material platform for controllable terahertz emission.Excitations of quantum Ising chain CoNb2O6 in low transverse field: quantitative description of bound states stabilized by off-diagonal exchange and applied field: data archive
University of Oxford (2023)
Abstract:
The deposited package contains experimental single crystal inelastic neutron scattering data probing the spin dynamics in the quantum Ising chain magnet CoNb2O6 in applied transverse magnetic field together with corresponding theoretical calculations of the spin dynamics. A matlab script to read and plot all data in ASCII files is also supplied.Pressure effects on magnetic properties of LaMnO3 and YMnO3
Low Temperature Physics AIP Publishing 49:1 (2023) 145-149