Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Professor Fabian Essler

Professorial Research Fellow

Research theme

  • Fields, strings, and quantum dynamics
  • Quantum materials

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
Fabian.Essler@physics.ox.ac.uk
Telephone: 01865 (2)73971
Rudolf Peierls Centre for Theoretical Physics, room 70.12
www-thphys.physics.ox.ac.uk/people/FabianEssler
  • About
  • Publications

Long-time divergences in the nonlinear response of gapped one-dimensional many-particle systems

SciPost Physics SciPost 19:4 (2025) 086

Authors:

Michele Fava, Sarang Gopalakrishnan, Romain Vasseur, Siddharth Parameswaran, Fabian Essler

Abstract:

SciPost Journals Publication Detail SciPost Phys. 19, 086 (2025) Long-time divergences in the nonlinear response of gapped one-dimensional many-particle systems
More details from the publisher
Details from ORA

Lifted TASEP: Long-time dynamics, generalizations, and continuum limit

SciPost Physics Core SciPost 8:4 (2025) 063

Authors:

Fabian Essler, Jeanne Gipouloux, Werner Krauth

Abstract:

We investigate the lifted TASEP and its generalization, the GL-TASEP. We analyze the spectral properties of the transition matrix of the lifted TASEP using its Bethe ansatz solution, and use them to determine the scaling of the relaxation time (the inverse spectral gap) with particle number. The observed scaling with particle number was previously found to disagree with Monte Carlo simulations of the equilibrium autocorrelation times of the structure factor and of other large-scale density correlators for a particular value of the pullback \alpha_{\rm crit} . We explain this discrepancy. We then construct the continuum limit of the lifted TASEP, which remains integrable, and connect it to the event-chain Monte Carlo algorithm. The critical pullback \alpha_{\rm crit} then equals the system pressure. We generalize the lifted TASEP to a large class of nearest-neighbour interactions, which lead to stationary states characterized by non-trivial Boltzmann distributions. By tuning the pullback parameter in the GL-TASEP to a particular value we can again achieve a polynomial speedup in the time required to converge to the steady state. We comment on the possible integrability of the GL-TASEP.
More details from the publisher
Details from ORA

Long-time divergences in the nonlinear response of gapped one-dimensional many-particle systems

(2025)

Authors:

Michele Fava, Sarang Gopalakrishnan, Romain Vasseur, Siddharth A Parameswaran, Fabian HL Essler

Abstract:

SciPost Submission Detail Long-time divergences in the nonlinear response of gapped one-dimensional many-particle systems
More details from the publisher

Linear response and exact hydrodynamic projections in Lindblad equations with decoupled Bogoliubov hierarchies

(2025)

Authors:

Patrik Penc, Fabian HL Essler

Lifted TASEP: long-time dynamics,generalizations, and continuum limit

(2025)

Authors:

Fabian HL Essler, Jeanne Gipouloux, Werner Krauth

Abstract:

SciPost Submission Detail Lifted TASEP: long-time dynamics,generalizations, and continuum limit
More details from the publisher

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet