Integrability of one-dimensional Lindbladians from operator-space fragmentation
Physical Review E American Physical Society 102:6 (2020) 062210
Authors:
Fabian HL Essler, Lorenzo Piroli
Abstract:
We introduce families of one-dimensional Lindblad equations describing open many-particle quantum systems that are exactly solvable in the following sense: (i) The space of operators splits into exponentially many (in system size) subspaces that are left invariant under the dissipative evolution; (ii) the time evolution of the density matrix on each invariant subspace is described by an integrable Hamiltonian. The prototypical example is the quantum version of the asymmetric simple exclusion process (ASEP) which we analyze in some detail. We show that in each invariant subspace the dynamics is described in terms of an integrable spin-1/2 XXZ Heisenberg chain with either open or twisted boundary conditions. We further demonstrate that Lindbladians featuring integrable operator-space fragmentation can be found in spin chains with arbitrary local physical dimensions.