Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Professor Fabian Essler

Professorial Research Fellow

Research theme

  • Fields, strings, and quantum dynamics
  • Quantum materials

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
Fabian.Essler@physics.ox.ac.uk
Telephone: 01865 (2)73971
Rudolf Peierls Centre for Theoretical Physics, room 70.12
www-thphys.physics.ox.ac.uk/people/FabianEssler
  • About
  • Publications

Ising tricriticality in the extended Hubbard model with bond dimerization

Physical Review B - Condensed Matter and Materials Physics American Physical Society 93:23 (2016)

Authors:

Satoshi Ejima, Fabian Essler, Florian Lange, Holger Fehske

Abstract:

We explore the quantum phase transition between Peierls and charge-density-wave insulating states in the one-dimensional, half-filled, extended Hubbard model with explicit bond dimerization. We show that the critical line of the continuous Ising transition terminates at a tricritical point, belonging to the universality class of the tricritical Ising model with central charge c=7/10. Above this point, the quantum phase transition becomes first order. Employing a numerical matrix-product-state based (infinite) density-matrix renormalization group method we determine the ground-state phase diagram, the spin and two-particle charge excitations gaps, and the entanglement properties of the model with high precision. Performing a bosonization analysis we can derive a field description of the transition region in terms of a triple sine-Gordon model. This allows us to derive field theory predictions for the power-law (exponential) decay of the density-density (spin-spin) and bond-order-wave correlation functions, which are found to be in excellent agreement with our numerical results.
More details from the publisher
Details from ORA
More details
Details from ArXiV
More details

Quench dynamics and relaxation in isolated integrable quantum spin chains

Journal of Statistical Mechanics: Theory and Experiment Institute of Physics 2016:June (2016) 064002

Authors:

Fabian HL Essler, Maurizio Fagotti

Abstract:

We review the dynamics after quantum quenches in integrable quantum spin chains. We give a pedagogical introduction to relaxation in isolated quantum systems, and discuss the description of the steady state by (gen- eralized) Gibbs ensembles. When then turn to general features in the time evolution of local observables after the quench, using a simple model of free fermions as an example. In the second part we present an overview of recent progress in describing quench dynamics in two key paradigms for quantum integrable models, the transverse field Ising chain and the anisotropic spin-1/2 Heisenberg chain.
More details from the publisher
Details from ORA
More details
Details from ArXiV
More details

Entanglement growth and correlation spreading with variable-range interactions in spin and fermionic tunneling models

Physical Review A American Physical Society 93:5 (2016) 053620

Authors:

Anton Buyskikh, Maurizio Fagotti, Johannes Schachenmayer, Fabian Essler, AJ Daley

Abstract:

We investigate the dynamics following a global parameter quench for two one-dimensional models with variable-range power-law interactions: a long-range transverse Ising model, which has recently been realized in chains of trapped ions, and a long-range lattice model for spinless fermions with long-range tunneling. For the transverse Ising model, the spreading of correlations and growth of entanglement are computed using numerical matrix product state techniques, and are compared with exact solutions for the fermionic tunneling model. We identify transitions between regimes with and without an apparent linear light cone for correlations, which correspond closely between the two models. For long-range interactions (in terms of separation distance r, decaying slower than 1/r), we find that despite the lack of a light cone, correlations grow slowly as a power law at short times, and that - depending on the structure of the initial state - the growth of entanglement can also be sublinear. These results are understood through analytical calculations, and should be measurable in experiments with trapped ions.

More details from the publisher
Details from ORA
More details
Details from ArXiV
More details

Quantum quenches to the attractive one-dimensional Bose gas: exact results

(2016)

Authors:

Lorenzo Piroli, Pasquale Calabrese, Fabian HL Essler
More details from the publisher

Ising tricriticality in the extended Hubbard model with bond dimerization

(2016)

Authors:

Satoshi Ejima, Fabian HL Essler, Florian Lange, Holger Fehske
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 20
  • Page 21
  • Page 22
  • Page 23
  • Current page 24
  • Page 25
  • Page 26
  • Page 27
  • Page 28
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet