Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Professor Fabian Essler

Professorial Research Fellow

Research theme

  • Fields, strings, and quantum dynamics
  • Quantum materials

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
Fabian.Essler@physics.ox.ac.uk
Telephone: 01865 (2)73971
Rudolf Peierls Centre for Theoretical Physics, room 70.12
www-thphys.physics.ox.ac.uk/people/FabianEssler
  • About
  • Publications

Quench Dynamics in a Model with Tuneable Integrability Breaking

(2013)

Authors:

FHL Essler, S Kehrein, SR Manmana, NJ Robinson
More details from the publisher

Time evolution of local observables after quenching to an integrable model

Physical Review Letters 110:25 (2013)

Authors:

JS Caux, FHL Essler

Abstract:

We consider quantum quenches in integrable models. We argue that the behavior of local observables at late times after the quench is given by their expectation values with respect to a single representative Hamiltonian eigenstate. This can be viewed as a generalization of the eigenstate thermalization hypothesis to quantum integrable models. We present a method for constructing this representative state by means of a generalized thermodynamic Bethe ansatz (GTBA). Going further, we introduce a framework for calculating the time dependence of local observables as they evolve towards their stationary values. As an explicit example we consider quantum quenches in the transverse-field Ising chain and show that previously derived results are recovered efficiently within our framework. © 2013 American Physical Society.
More details from the publisher
More details
More details
Details from ArXiV

Stationary behaviour of observables after a quantum quench in the spin-1/2 Heisenberg XXZ chain

ArXiv 1305.0468 (2013)

Authors:

Maurizio Fagotti, Fabian HL Essler

Abstract:

We consider a quantum quench in the spin-1/2 Heisenberg XXZ chain. At late times after the quench it is believed that the expectation values of local operators approach time-independent values, that are described by a generalized Gibbs ensemble. Employing a quantum transfer matrix approach we show how to determine short-range correlation functions in such generalized Gibbs ensembles for a class of initial states.
Details from ArXiV
More details from the publisher
More details

Stationary behaviour of observables after a quantum quench in the spin-1/2 Heisenberg XXZ chain

(2013)

Authors:

Maurizio Fagotti, Fabian HL Essler
More details from the publisher

Shell-filling effect in the entanglement entropies of spinful fermions

Physical Review Letters 110:11 (2013)

Authors:

FHL Essler, AM Läuchli, P Calabrese

Abstract:

We consider the von Neumann and Rényi entropies of the one-dimensional quarter-filled Hubbard model. We observe that for periodic boundary conditions the entropies exhibit an unexpected dependence on system size: for L=4 mod 8 the results are in agreement with expectations based on conformal field theory, while for L=0 mod 8 additional contributions arise. We explain this observation in terms of a shell-filling effect and develop a conformal field theory approach to calculate the extra term in the entropies. Similar shell-filling effects in entanglement entropies are expected to be present in higher dimensions and for other multicomponent systems. © 2013 American Physical Society.
More details from the publisher
More details
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 27
  • Page 28
  • Page 29
  • Page 30
  • Current page 31
  • Page 32
  • Page 33
  • Page 34
  • Page 35
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet