Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Prof Ramin Golestanian

Professor of Theoretical Condensed Matter Physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
Ramin.Golestanian@physics.ox.ac.uk
Telephone: 01865 273974
Rudolf Peierls Centre for Theoretical Physics, room 60.12
Max Planck Institute for Dynamics and Self-Organization
Oxford Podcast (2014): Living Matter & Theo Phys
Oxford Podcast (2017): The bacterial Viewpoint
  • About
  • Teaching
  • Publications

Reentrant condensation transition in a model of driven scalar active matter with diffusivity edge

EPL (Europhysics Letters) IOP Publishing 142:6 (2023) 67004

Authors:

Jonas Berx, Aritra Bose, Ramin Golestanian, Benoît Mahault
More details from the publisher
More details

Dynamical theory of topological defects I: the multivalued solution of the diffusion equation

(2023)

Authors:

Jacopo Romano, Benoît Mahault, Ramin Golestanian
More details from the publisher
Details from ArXiV

Emergent organization and polarization due to active fluctuations

Physical Review Research American Physical Society (APS) 5:2 (2023) l022012

Authors:

Benoît Mahault, Prakhar Godara, Ramin Golestanian
More details from the publisher
More details

Self-organization of primitive metabolic cycles due to non-reciprocal interactions

(2023)

Authors:

Vincent Ouazan-Reboul, Jaime Agudo-Canalejo, Ramin Golestanian
More details from the publisher
Details from ArXiV

Steering self-organisation through confinement

Soft Matter Royal Society of Chemistry 19:9 (2023) 1695-1704

Authors:

Nuno AM Araújo, Liesbeth MC Janssen, Thomas Barois, Guido Boffetta, Itai Cohen, Alessandro Corbetta, Olivier Dauchot, Marjolein Dijkstra, William M Durham, Audrey Dussutour, Simon Garnier, Hanneke Gelderblom, Ramin Golestanian, Lucio Isa, Gijsje H Koenderink, Hartmut Löwen, Ralf Metzler, Marco Polin, C Patrick Royall, Anđela Šarić, Anupam Sengupta, Cécile Sykes, Vito Trianni, Idan Tuval, Nicolas Vogel, Julia M Yeomans, Iker Zuriguel, Alvaro Marin, Giorgio Volpe

Abstract:

Self-organisation is the spontaneous emergence of spatio-temporal structures and patterns from the interaction of smaller individual units. Examples are found across many scales in very different systems and scientific disciplines, from physics, materials science and robotics to biology, geophysics and astronomy. Recent research has highlighted how self-organisation can be both mediated and controlled by confinement. Confinement is an action over a system that limits its units’ translational and rotational degrees of freedom, thus also influencing the system's phase space probability density; it can function as either a catalyst or inhibitor of self-organisation. Confinement can then become a means to actively steer the emergence or suppression of collective phenomena in space and time. Here, to provide a common framework and perspective for future research, we examine the role of confinement in the self-organisation of soft-matter systems and identify overarching scientific challenges that need to be addressed to harness its full scientific and technological potential in soft matter and related fields. By drawing analogies with other disciplines, this framework will accelerate a common deeper understanding of self-organisation and trigger the development of innovative strategies to steer it using confinement, with impact on, e.g., the design of smarter materials, tissue engineering for biomedicine and in guiding active matter.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • Current page 12
  • Page 13
  • Page 14
  • Page 15
  • Page 16
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet