A Synthetic Minimal Beating Axoneme.
Small (Weinheim an der Bergstrasse, Germany) 18:32 (2022) e2107854
Abstract:
Cilia and flagella are beating rod-like organelles that enable the directional movement of microorganisms in fluids and fluid transport along the surface of biological organisms or inside organs. The molecular motor axonemal dynein drives their beating by interacting with microtubules. Constructing synthetic beating systems with axonemal dynein capable of mimicking ciliary beating still represents a major challenge. Here, the bottom-up engineering of a sustained beating synthoneme consisting of a pair of microtubules connected by a series of periodic arrays of approximately eight axonemal dyneins is reported. A model leads to the understanding of the motion through the cooperative, cyclic association-dissociation of the molecular motor from the microtubules. The synthoneme represents a bottom-up self-organized bio-molecular machine at the nanoscale with cilia-like properties.Response to Comment on "Following Molecular Mobility during Chemical Reactions: No Evidence for Active Propulsion" and "Molecular Diffusivity of Click Reaction Components: The Diffusion Enhancement Question".
Journal of the American Chemical Society 144:30 (2022) 13441-13445
Abstract:
In their Comment (DOI: 10.1021/jacs.2c02965) on two related publications by our group (J. Am. Chem. Soc. 2022, 144, 1380-1388; DOI: 10.1021/jacs.1c11754) and another (J. Am. Chem. Soc. 2021, 143, 20884-20890; DOI: 10.1021/jacs.1c09455), Huang and Granick refer to the diffusion NMR measurements of molecules during a copper-catalyzed azide-alkyne cycloaddition (CuAAC) "click" reaction. Here we respond to their comments and maintain that no measurable diffusion enhancement was observed during the reaction. We expand on the physical arguments presented in our original JACS Article regarding the appropriate reference state for the diffusion coefficient and present new data showing that the use of other reference states, as suggested by Huang and Granick, will still support our conclusion that the two reactants and one product of the CuAAC reaction do not exhibit boosted mobility during the reaction.A competitive advantage through fast dead matter elimination in confined cellular aggregates
New Journal of Physics IOP Publishing 24:7 (2022) 073003
A DNA origami rotary ratchet motor.
Nature 607:7919 (2022) 492-498
Abstract:
To impart directionality to the motions of a molecular mechanism, one must overcome the random thermal forces that are ubiquitous on such small scales and in liquid solution at ambient temperature. In equilibrium without energy supply, directional motion cannot be sustained without violating the laws of thermodynamics. Under conditions away from thermodynamic equilibrium, directional motion may be achieved within the framework of Brownian ratchets, which are diffusive mechanisms that have broken inversion symmetry1-5. Ratcheting is thought to underpin the function of many natural biological motors, such as the F1F0-ATPase6-8, and it has been demonstrated experimentally in synthetic microscale systems (for example, to our knowledge, first in ref. 3) and also in artificial molecular motors created by organic chemical synthesis9-12. DNA nanotechnology13 has yielded a variety of nanoscale mechanisms, including pivots, hinges, crank sliders and rotary systems14-17, which can adopt different configurations, for example, triggered by strand-displacement reactions18,19 or by changing environmental parameters such as pH, ionic strength, temperature, external fields and by coupling their motions to those of natural motor proteins20-26. This previous work and considering low-Reynolds-number dynamics and inherent stochasticity27,28 led us to develop a nanoscale rotary motor built from DNA origami that is driven by ratcheting and whose mechanical capabilities approach those of biological motors such as F1F0-ATPase.Elastically-mediated collective organisation of magnetic microparticles.
Soft matter 18:28 (2022) 5171-5176