Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Prof Ramin Golestanian

Professor of Theoretical Condensed Matter Physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
Ramin.Golestanian@physics.ox.ac.uk
Telephone: 01865 273974
Rudolf Peierls Centre for Theoretical Physics, room 60.12
Max Planck Institute for Dynamics and Self-Organization
Oxford Podcast (2014): Living Matter & Theo Phys
Oxford Podcast (2017): The bacterial Viewpoint
  • About
  • Teaching
  • Publications

The 2020 motile active matter roadmap

Journal of Physics IOP Science 32:19 (2020) 193001

Authors:

Gerhard Gompper, Roland G Winkler, Thomas Speck, Alexandre Solon, Cesare Nardini, Fernando Peruani, Hartmut Löwen, Ramin Golestanian, U Benjamin Kaupp, Luis Alvarez, Thomas Kiørboe, Eric Lauga, Wilson CK Poon, Antonio DeSimone, Santiago Muiños-Landin, Alexander Fischer, Nicola A Söker, Frank Cichos, Raymond Kapral, Pierre Gaspard, Marisol Ripoll, Francesc Sagues, Amin Doostmohammadi, Julia M Yeomans, Igor S Aranson, Clemens Bechinger, Holger Stark, Charlotte K Hemelrijk, François J Nedelec, Trinish Sarkar, Thibault Aryaksama, Mathilde Lacroix, Guillaume Duclos, Victor Yashunsky, Pascal Silberzan, Marino Arroyo, Sohan Kale

Abstract:

Activity and autonomous motion are fundamental in living and engineering systems. This has stimulated the new field of 'active matter' in recent years, which focuses on the physical aspects of propulsion mechanisms, and on motility-induced emergent collective behavior of a larger number of identical agents. The scale of agents ranges from nanomotors and microswimmers, to cells, fish, birds, and people. Inspired by biological microswimmers, various designs of autonomous synthetic nano- and micromachines have been proposed. Such machines provide the basis for multifunctional, highly responsive, intelligent (artificial) active materials, which exhibit emergent behavior and the ability to perform tasks in response to external stimuli. A major challenge for understanding and designing active matter is their inherent nonequilibrium nature due to persistent energy consumption, which invalidates equilibrium concepts such as free energy, detailed balance, and time-reversal symmetry. Unraveling, predicting, and controlling the behavior of active matter is a truly interdisciplinary endeavor at the interface of biology, chemistry, ecology, engineering, mathematics, and physics. The vast complexity of phenomena and mechanisms involved in the self-organization and dynamics of motile active matter comprises a major challenge. Hence, to advance, and eventually reach a comprehensive understanding, this important research area requires a concerted, synergetic approach of the various disciplines. The 2020 motile active matter roadmap of Journal of Physics: Condensed Matter addresses the current state of the art of the field and provides guidance for both students as well as established scientists in their efforts to advance this fascinating area.
More details from the publisher
Details from ORA
More details
More details

Field synchronized bidirectional current in confined driven colloids

Physical Review Research American Physical Society (APS) 2:1 (2020) 012025

Authors:

Fanlong Meng, Antonio Ortiz-Ambriz, Helena Massana-Cid, Andrej Vilfan, Ramin Golestanian, Pietro Tierno
More details from the publisher
More details

Controlling collective rotational patterns of magnetic rotors

Nature Communications Springer Nature 10 (2019) 4696

Authors:

D Matsunaga, JK Hamilton, F Meng, Julia Yeomans, R Golestanian
More details from the publisher
Details from ORA
More details
More details

Phenotypic differences in reversible attachment behavior reveal distinct P. aeruginosa surface colonization strategies

Cold Spring Harbor Laboratory (2019) 798843

Authors:

Calvin K Lee, Jérémy Vachier, Jaime de Anda, Kun Zhao, Amy E Baker, Rachel R Bennett, Catherine R Armbruster, Kimberley A Lewis, Rebecca L Tarnopol, Charles J Lomba, Deborah A Hogan, Matthew R Parsek, George A O’Toole, Ramin Golestanian, Gerard CL Wong
More details from the publisher

Phoretic Active Matter

(2019)
More details from the publisher
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 24
  • Page 25
  • Page 26
  • Page 27
  • Current page 28
  • Page 29
  • Page 30
  • Page 31
  • Page 32
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet