Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Prof Ramin Golestanian

Professor of Theoretical Condensed Matter Physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
Ramin.Golestanian@physics.ox.ac.uk
Telephone: 01865 273974
Rudolf Peierls Centre for Theoretical Physics, room 60.12
Max Planck Institute for Dynamics and Self-Organization
Oxford Podcast (2014): Living Matter & Theo Phys
Oxford Podcast (2017): The bacterial Viewpoint
  • About
  • Teaching
  • Publications

Flagella-like Beating of a Single Microtubule.

Nano letters 19:5 (2019) 3359-3363

Authors:

Andrej Vilfan, Smrithika Subramani, Eberhard Bodenschatz, Ramin Golestanian, Isabella Guido

Abstract:

Kinesin motors can induce a buckling instability in a microtubule with a fixed minus end. Here we show that by modifying the surface with a protein-repellent functionalization and using clusters of kinesin motors, the microtubule can exhibit persistent oscillatory motion resembling the beating of sperm flagella. The observed period is of the order of 1 min. From the experimental images we theoretically determine a distribution of motor forces that explains the observed shapes using a maximum likelihood approach. A good agreement is achieved with a small number of motor clusters acting simultaneously on a microtubule. The tangential forces exerted by a cluster are mostly in the range 0-8 pN toward the microtubule minus end, indicating the action of 1 or 2 kinesin motors. The lateral forces are distributed symmetrically and mainly below 10 pN, while the lateral velocity has a strong peak around zero. Unlike well-known models for flapping filaments, kinesins are found to have a strong "pinning" effect on the beating filaments. Our results suggest new strategies to utilize molecular motors in dynamic roles that depend sensitively on the stress built-up in the system.
More details from the publisher
More details
More details

Publisher's Note: "Chemical and hydrodynamic alignment of an enzyme" [J. Chem. Phys. 150, 115102 (2019)].

The Journal of chemical physics 150:15 (2019) 159903

Authors:

T Adeleke-Larodo, J Agudo-Canalejo, R Golestanian
More details from the publisher
More details
More details

Fluctuation-induced hydrodynamic coupling in an asymmetric, anisotropic dumbbell

European Physical Journal E Springer 42:3 (2019) 39

Authors:

Tunrayo Adeleke-Larodo, P Illien, R Golestanian

Abstract:

We recently introduced a model of an asymmetric dumbbell made of two hydrodynamically coupled subunits as a minimal model for a macromolecular complex, in order to explain the observation of enhanced diffusion of catalytically active enzymes. It was shown that internal fluctuations lead to a negative contribution to the overall diffusion coefficient and that the fluctuation-induced contribution is controlled by the strength of the interactions between the subunits and their asymmetry. We develop the model by studying the effect of anisotropy on the diffusion properties of a modular structure. Using a moment expansion method we derive an analytic form for the long-time diffusion coefficient of an asymmetric, anisotropic dumbbell and show systematically its dependence on internal and external symmetry. The method provides a tractable, analytical route for studying the stochastic dynamics of dumbbell models. The present work opens the way to more detailed descriptions of the effect of hydrodynamic interactions on the diffusion and transport properties of biomolecules with complex structures.
More details from the publisher
Details from ORA
More details
More details

Magnetically-actuated artificial cilium: a simple theoretical model

Soft Matter Royal Society of Chemistry (2019) 3864-3871

Authors:

F Meng, D Matsunaga, Julia Yeomans, Ramin Golestanian

Abstract:

We propose a theoretical model for a magnetically-actuated artificial cilium in a fluid environment and investigate its dynamical behaviour, using both analytical calculations and numerical simulations. The cilium consists of a spherical soft magnet, a spherical hard magnet, and an elastic spring that connects the two magnetic components. Under a rotating magnetic field, the cilium exhibits a transition from phase-locking at low frequencies to phase-slipping at higher frequencies. We study the dynamics of the magnetic cilium in the vicinity of a wall by incorporating its hydrodynamic influence, and examine the efficiency of the actuated cilium in pumping viscous fluids. This cilium model can be helpful in a variety of applications such as transport and mixing of viscous solutions at small scales and fabricating microswimmers.
More details from the publisher
Details from ORA
More details
More details

Chemical and hydrodynamic alignment of an enzyme

Journal of Chemical Physics AIP Publishing 150:11 (2019) 115102

Authors:

Tunrayo Adeleke-Larodo, J Agudo-Canalejo, Ramin Golestanian

Abstract:

Motivated by the implications of the complex and dynamic modular geometry of an enzyme on its motion, we investigate the effect of combining long-range internal and external hydrodynamic interactions due to thermal fluctuations with short-range surface interactions. An asymmetric dumbbell consisting of two unequal subunits, in a nonuniform suspension of a solute with which it interacts via hydrodynamic interactions as well as non-contact surface interactions, is shown to have two alignment mechanisms due to the two types of interactions. In addition to alignment, the chemical gradient results in a drift velocity that is modified by hydrodynamic interactions between the constituents of the enzyme.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 26
  • Page 27
  • Page 28
  • Page 29
  • Current page 30
  • Page 31
  • Page 32
  • Page 33
  • Page 34
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet