Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Prof Ramin Golestanian

Professor of Theoretical Condensed Matter Physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
Ramin.Golestanian@physics.ox.ac.uk
Telephone: 01865 273974
Rudolf Peierls Centre for Theoretical Physics, room 60.12
Max Planck Institute for Dynamics and Self-Organization
Oxford Podcast (2014): Living Matter & Theo Phys
Oxford Podcast (2017): The bacterial Viewpoint
  • About
  • Teaching
  • Publications

Emergent polar order in non-polar mixtures with non-reciprocal interactions

(2024)

Authors:

Giulia Pisegna, Suropriya Saha, Ramin Golestanian
More details from the publisher
Details from ArXiV

Chemotactic particles as strong electrolytes: Debye-Hückel approximation and effective mobility law.

The Journal of chemical physics 160:15 (2024) 154901

Authors:

Pierre Illien, Ramin Golestanian

Abstract:

We consider a binary mixture of chemically active particles that produce or consume solute molecules and that interact with each other through the long-range concentration fields they generate. We analytically calculate the effective phoretic mobility of these particles when the mixture is submitted to a constant, external concentration gradient, at leading order in the overall concentration. Relying on an analogy with the modeling of strong electrolytes, we show that the effective phoretic mobility decays with the square root of the concentration: our result is, therefore, a nonequilibrium counterpart to the celebrated Kohlrausch and Debye-Hückel-Onsager conductivity laws for electrolytes, which are extended here to particles with long-range nonreciprocal interactions. The effective mobility law we derive reveals the existence of a regime of maximal mobility and could find applications in the description of nanoscale transport phenomena in living cells.
More details from the publisher
More details
More details

Dynamical theory of topological defects II: universal aspects of defect motion

Journal of Statistical Mechanics Theory and Experiment IOP Publishing 2024:3 (2024) 033208

Authors:

Jacopo Romano, Benoît Mahault, Ramin Golestanian
More details from the publisher
More details

Energetic cost of microswimmer navigation: The role of body shape

Physical Review Research American Physical Society (APS) 6:1 (2024) 013274

Authors:

Lorenzo Piro, Andrej Vilfan, Ramin Golestanian, Benoît Mahault
More details from the publisher
More details

A DNA turbine powered by a transmembrane potential across a nanopore.

Nature nanotechnology 19:3 (2024) 338-344

Authors:

Xin Shi, Anna-Katharina Pumm, Christopher Maffeo, Fabian Kohler, Elija Feigl, Wenxuan Zhao, Daniel Verschueren, Ramin Golestanian, Aleksei Aksimentiev, Hendrik Dietz, Cees Dekker

Abstract:

Rotary motors play key roles in energy transduction, from macroscale windmills to nanoscale turbines such as ATP synthase in cells. Despite our abilities to construct engines at many scales, developing functional synthetic turbines at the nanoscale has remained challenging. Here, we experimentally demonstrate rationally designed nanoscale DNA origami turbines with three chiral blades. These DNA nanoturbines are 24-27 nm in height and diameter and can utilize transmembrane electrochemical potentials across nanopores to drive DNA bundles into sustained unidirectional rotations of up to 10 revolutions s-1. The rotation direction is set by the designed chirality of the turbine. All-atom molecular dynamics simulations show how hydrodynamic flows drive this turbine. At high salt concentrations, the rotation direction of turbines with the same chirality is reversed, which is explained by a change in the anisotropy of the electrophoretic mobility. Our artificial turbines operate autonomously in physiological conditions, converting energy from naturally abundant electrochemical potentials into mechanical work. The results open new possibilities for engineering active robotics at the nanoscale.
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Current page 7
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet