Near-field hydrodynamic interactions determine travelling wave directions of collectively beating cilia.
Journal of the Royal Society, Interface 21:217 (2024) 20240221
Abstract:
Cilia can beat collectively in the form of a metachronal wave, and we investigate how near-field hydrodynamic interactions between cilia can influence the collective response of the beating cilia. Based on the theoretical framework developed in the work of Meng et al. (Meng et al. 2021 Proc. Natl Acad. Sci. USA 118, e2102828118), we find that the first harmonic mode in the driving force acting on each individual cilium can determine the direction of the metachronal wave after considering the finite size of the beating trajectories, which is confirmed by our agent-based numerical simulations. The stable wave patterns, e.g. the travelling direction, can be controlled by the driving forces acting on the cilia, based on which one can change the flow field generated by the cilia. This work can not only help to understand the role of the hydrodynamic interactions in the collective behaviours of cilia, but can also guide future designs of artificial cilia beating in the desired dynamic mode.Defect interactions in the non-reciprocal Cahn-Hilliard model
(2024)
Nonreciprocal collective dynamics in a mixture of phoretic Janus colloids
New Journal of Physics IOP Publishing 26:7 (2024) 073006
Abstract:
A multicomponent mixture of Janus colloids with distinct catalytic coats and phoretic mobilities is a promising theoretical system to explore the collective behavior arising from nonreciprocal interactions. An active colloid produces (or consumes) chemicals, self-propels, drifts along chemical gradients, and rotates its intrinsic polarity to align with a gradient. As a result the connection from microscopics to continuum theories through coarse-graining couples densities and polarization fields in unique ways. Focusing on a binary mixture, we show that these couplings render the unpatterned reference state unstable to small perturbations through a variety of instabilities including oscillatory ones which arise on crossing an exceptional point or through a Hopf bifurcation. For fast relaxation of the polar fields, they can be eliminated in favor of the density fields to obtain a microscopic realization of the Nonreciprocal Cahn–Hilliard model for two conserved species with two distinct sources of non-reciprocity, one in the interaction coefficient and the other in the interfacial tension. Our work establishes Janus colloids as a versatile model for a bottom-up approach to both scalar and polar active mixtures.Nonlinear response theory of molecular machines
EPL (Europhysics Letters) IOP Publishing 147:2 (2024) 21002
Escaping Kinetic Traps Using Nonreciprocal Interactions.
Physical review letters 133:2 (2024) 028301