Statistical mechanics of semiflexible ribbon polymers.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 62:4 Pt B (2000) 5488-5499
Abstract:
The statistical mechanics of a ribbon polymer made up of two semiflexible chains is studied using both analytical techniques and simulation. The system is found to have a crossover transition at some finite temperature, from one type of short-range order to a fundamentally different sort of short-range order. In the high temperature regime, the two-point correlation functions of the object are identical to wormlike chains, while in the low temperature regime they are different due to a twist structure. The crossover happens when the persistence length of individual strands becomes comparable to the thickness of the ribbon. In the low temperature regime, the ribbon is observed to have a "kink-rod" structure with a mutual exclusion of twist and bend in contrast to smooth wormlike chain behavior. This is due to its anisotropic rigidity and corresponds to an infinitely strong twist-bend coupling. The double-stranded polymer is also studied in a confined geometry. It is shown that when the polymer is restricted in a particular direction to a size less than the bare persistence length of the individual strands, it develops zigzag conformations which are indicated by an oscillatory tangent-tangent correlation function in the direction of confinement. Increasing the separation of the confining plates leads to a crossover to the free behavior, which takes place at separations close to the bare persistence length. These results are expected to be relevant for experiments that involve complexation of two or more stiff or semiflexible polymers.Relaxation of a Moving Contact Line and Landau-Levich Effect
ArXiv cond-mat/0006496 (2000)
Abstract:
The dynamics of the deformations of a moving contact line is formulated. It is shown that an advancing contact line relaxes more quickly as compared to the equilibium case, while for a receding contact line there is a corresponding slowing down. For a receding contact line on a heterogeneous solid surface, it is found that a roughening transition takes place which formally corresponds to the onset of leaving a Landau-Levich film.Finite Temperature Behavior of the $ν=1$ Quantum Hall Effect in Bilayer Electron Systems
ArXiv cond-mat/9906374 (1999)
Abstract:
An effective field theoretic description of $\nu=1$ bilayer electron systems stabilized by Coulomb repulsion in a single wide quantum well is examined using renormalization group techniques. The system is found to undergo a crossover from a low temperature strongly correlated quantum Hall state to a high temperature compressible state. This picture is used to account for the recent experimental observation of an anomalous transition in bilayer electron systems (T. S. Lay, {\em et al.} Phys. Rev. B {\bf 50}, 17725 (1994)). An estimate for the crossover temperature is provided, and it is shown that its dependence on electron density is in reasonable agreement with i the experiment.Dynamics of Counterion Condensation
ArXiv cond-mat/9905251 (1999)
Abstract:
Using a generalization of the Poisson-Boltzmann equation, dynamics of counterion condensation is studied. For a single charged plate in the presence of counterions, it is shown that the approach to equilibrium is diffusive. In the far from equilibrium case of a moving charged plate, a dynamical counterion condensation transition occurs at a critical velocity. The complex dynamic behavior of the counterion cloud is shown to lead to a novel nonlinear force-velocity relation for the moving plate.Collapse of Stiff Polyelectrolytes due to Counterion Fluctuations
ArXiv cond-mat/9901293 (1999)