Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Prof Ramin Golestanian

Professor of Theoretical Condensed Matter Physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
Ramin.Golestanian@physics.ox.ac.uk
Telephone: 01865 273974
Rudolf Peierls Centre for Theoretical Physics, room 60.12
Max Planck Institute for Dynamics and Self-Organization
Oxford Podcast (2014): Living Matter & Theo Phys
Oxford Podcast (2017): The bacterial Viewpoint
  • About
  • Teaching
  • Publications

Dynamics of Counterion Condensation

ArXiv cond-mat/9905251 (1999)

Abstract:

Using a generalization of the Poisson-Boltzmann equation, dynamics of counterion condensation is studied. For a single charged plate in the presence of counterions, it is shown that the approach to equilibrium is diffusive. In the far from equilibrium case of a moving charged plate, a dynamical counterion condensation transition occurs at a critical velocity. The complex dynamic behavior of the counterion cloud is shown to lead to a novel nonlinear force-velocity relation for the moving plate.
Details from ArXiV
More details from the publisher

Collapse of Stiff Polyelectrolytes due to Counterion Fluctuations

ArXiv cond-mat/9901293 (1999)

Authors:

Ramin Golestanian, Mehran Kardar, Tanniemola B Liverpool

Abstract:

The effective elasticity of highly charged stiff polyelectrolytes is studied in the presence of counterions, with and without added salt. The rigid polymer conformations may become unstable due to an effective attraction induced by counterion density fluctuations. Instabilities at the longest, or intermediate length scales may signal collapse to globule, or necklace states, respectively. In the presence of added-salt, a generalized electrostatic persistence length is obtained, which has a nontrivial dependence on the Debye screening length.
Details from ArXiV
More details from the publisher

Comment on ``Adsorption of Polyelectrolyte onto a Colloid of Opposite Charge''

ArXiv cond-mat/9901152 (1999)

Abstract:

In a recent Letter, Gurovitch and Sens studied the adsorption of a weakly charged polyelectrolyte chain onto an oppositely charged colloidal particle. By using a variational technique they found that the colloidal particle can adsorb a polymer of higher charge than its own, and thus be ``overcharged.'' I argue that the observed overcharging by a factor of 16/5 is indeed an artifact of the approximations involved in the study. Moreover, I show that the existence of overcharging depends crucially on the choice of the trial wave function, contrary to their claim.
Details from ArXiV
More details from the publisher

Motion-Induced Radiation from a Dynamically Deforming Mirror

ArXiv quant-ph/9803070 (1998)

Authors:

Faez Miri, Ramin Golestanian

Abstract:

A path integral formulation is developed to study the spectrum of radiation from a perfectly reflecting (conducting) surface. It allows us to study arbitrary deformations in space and time. The spectrum is calculated to second order in the height function. For a harmonic traveling wave on the surface, we find many different regimes in which the radiation is restricted to certain directions. It is shown that high frequency photons are emitted in a beam with relatively low angular dispersion whose direction can be controlled by the mechanical deformations of the plate.
Details from ArXiV
More details from the publisher

Path Integral Approach to the Dynamic Casimir Effect with Fluctuating Boundaries

ArXiv quant-ph/9802017 (1998)

Authors:

Ramin Golestanian, Mehran Kardar

Abstract:

A path integral formulation is developed for the dynamic Casimir effect. It allows us to study arbitrary deformations in space and time of the perfectly reflecting (conducting) boundaries of a cavity. The mechanical response of the intervening vacuum is calculated to linear order in the frequency-wavevector plane, using which a plethora of interesting phenomena can be studied. For a single corrugated plate we find a correction to mass at low frequencies, and an effective shear viscosity at high frequencies that are both anisotropic. The anisotropy is set by the wavevector of the corrugation. For two plates, the mass renormalization is modified by a function of the ratio between the separation of the plates and the wave-length of corrugations. The dissipation rate is not modified for frequencies below the lowest optical mode of the cavity, and there is a resonant dissipation for all frequencies greater than that. In this regime, a divergence in the response function implies that such high frequency deformation modes of the cavity can not be excited by any macroscopic external forces. This phenomenon is intimately related to resonant particle creation. For particular examples of two corrugated plates that are stationary, or moving uniformly in the lateral directions, Josephson-like effects are observed. For capillary waves on the surface of mercury a renormalization to surface tension, and sound velocity is obtained.
Details from ArXiV
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 65
  • Page 66
  • Page 67
  • Page 68
  • Current page 69
  • Page 70
  • Page 71
  • Page 72
  • Page 73
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet