Path Integral Approach to the Dynamic Casimir Effect with Fluctuating Boundaries
ArXiv quant-ph/9802017 (1998)
Abstract:
A path integral formulation is developed for the dynamic Casimir effect. It allows us to study arbitrary deformations in space and time of the perfectly reflecting (conducting) boundaries of a cavity. The mechanical response of the intervening vacuum is calculated to linear order in the frequency-wavevector plane, using which a plethora of interesting phenomena can be studied. For a single corrugated plate we find a correction to mass at low frequencies, and an effective shear viscosity at high frequencies that are both anisotropic. The anisotropy is set by the wavevector of the corrugation. For two plates, the mass renormalization is modified by a function of the ratio between the separation of the plates and the wave-length of corrugations. The dissipation rate is not modified for frequencies below the lowest optical mode of the cavity, and there is a resonant dissipation for all frequencies greater than that. In this regime, a divergence in the response function implies that such high frequency deformation modes of the cavity can not be excited by any macroscopic external forces. This phenomenon is intimately related to resonant particle creation. For particular examples of two corrugated plates that are stationary, or moving uniformly in the lateral directions, Josephson-like effects are observed. For capillary waves on the surface of mercury a renormalization to surface tension, and sound velocity is obtained.The `Friction' of Vacuum, and other Fluctuation-Induced Forces
ArXiv cond-mat/9711071 (1997)
Abstract:
The static Casimir effect describes an attractive force between two conducting plates, due to quantum fluctuations of the electromagnetic (EM) field in the intervening space. {\it Thermal fluctuations} of correlated fluids (such as critical mixtures, super-fluids, liquid crystals, or electrolytes) are also modified by the boundaries, resulting in finite-size corrections at criticality, and additional forces that effect wetting and layering phenomena. Modified fluctuations of the EM field can also account for the `van der Waals' interaction between conducting spheres, and have analogs in the fluctuation--induced interactions between inclusions on a membrane. We employ a path integral formalism to study these phenomena for boundaries of arbitrary shape. This allows us to examine the many unexpected phenomena of the dynamic Casimir effect due to moving boundaries. With the inclusion of quantum fluctuations, the EM vacuum behaves essentially as a complex fluid, and modifies the motion of objects through it. In particular, from the mechanical response function of the EM vacuum, we extract a plethora of interesting results, the most notable being: (i) The effective mass of a plate depends on its shape, and becomes anisotropic. (ii) There is dissipation and damping of the motion, again dependent upon shape and direction of motion, due to emission of photons. (iii) There is a continuous spectrum of resonant cavity modes that can be excited by the motion of the (neutral) boundaries.A dynamical test of special relativity using the anomalous electron g-factor
Physics Letters, Section A: General, Atomic and Solid State Physics 231:5-6 (1997) 315-318
Abstract:
Using the geometrical structure found for rival theories of space-time, a dynamical test for the special theory of relativity is introduced in terms of the anomalous electron g-factor. The corresponding experimental measurements verify the validity of special relativity almost an order of magnitude more accurate than the best kinematical tests. © 1997 Elsevier Science B.V.Statistical mechanics of double-stranded semi-flexible polymers
ArXiv cond-mat/9705090 (1997)
Abstract:
We study the statistical mechanics of double-stranded semi-flexible polymers using both analytical techniques and simulation. We find a transition at some finite temperature, from a type of short range order to a fundamentally different sort of short range order. In the high temperature regime, the 2-point correlation functions of the object are identical to worm-like chains, while in the low temperature regime they are different due to a twist structure. In the low temperature phase, the polymers develop a kink-rod structure which could clarify some recent puzzling experiments on actin.The Mechanical Response of Vacuum
ArXiv quant-ph/9701005 (1997)