Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Prof Ramin Golestanian

Professor of Theoretical Condensed Matter Physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
Ramin.Golestanian@physics.ox.ac.uk
Telephone: 01865 273974
Rudolf Peierls Centre for Theoretical Physics, room 60.12
Max Planck Institute for Dynamics and Self-Organization
Oxford Podcast (2014): Living Matter & Theo Phys
Oxford Podcast (2017): The bacterial Viewpoint
  • About
  • Teaching
  • Publications

Tracer diffusivity in a time or space dependent temperature field

ArXiv cond-mat/0206500 (2002)

Authors:

Ramin Golestanian, Armand Ajdari

Abstract:

The conventional assumption that the self-diffusion coefficient of a small tracer can be obtained by a local and instantaneous application of Einstein's relation in a temperature field with spatial and temporal heterogeneity is revisited. It is shown that hydrodynamic fluctuations contribute to the self-diffusion tensor in a universal way, i.e. independent of the size and shape of the tracer. The hydrodynamic contribution is anisotropic--it reflects knowledge of the global anisotropy in the temperature profile, leading to anisotropic self-diffusion tensor for a spherical tracer. It is also retarded--it creates memory effects during the diffusion process due to hydrodynamic interactions.
Details from ArXiV
More details from the publisher

Radial distribution function of rod-like polyelectrolytes

European Physical Journal E 9:1 (2002) 41-46

Authors:

R Zandi, J Rudnick, R Golestanian

Abstract:

We study the effect of electrostatic interactions on the distribution function of the end-to-end distance of a single polyelectrolyte chain in the rod-like limit. The extent to which the radial distribution function of a polyelectrolyte is reproduced by that of a wormlike chain with an adjusted effective persistence length is investigated. Strong evidence is found for a universal scaling formula connecting the effective persistence length of a polyelectrolyte with the strength of the electrostatic interaction and the Debye screening length.
More details from the publisher
More details

Relaxation of a moving contact line and the Landau-Levich effect (vol 55, pg 228, 2001)

EUROPHYSICS LETTERS 57:2 (2002) 304-304

Authors:

R Golestanian, E Raphaël
More details from the publisher

Probing the strong boundary shape dependence of the Casimir force.

Phys Rev Lett 87:26 (2001) 260402

Authors:

T Emig, A Hanke, R Golestanian, M Kardar

Abstract:

We study the geometry dependence of the Casimir energy for deformed metal plates by a path integral quantization of the electromagnetic field. For the first time, we give a complete analytical result for the deformation induced change in Casimir energy delta E in an experimentally testable, nontrivial geometry, consisting of a flat and a corrugated plate. Our results show an interesting crossover for delta E as a function of the ratio of the mean plate distance H, to the corrugation length lambda: For lambda<>H.
More details from the publisher
More details
Details from ArXiV

Dissipation in dynamics of a moving contact line

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 64:3 I (2001) 316011-316017

Authors:

R Golestanian, E Raphaël

Abstract:

The dynamics of the deformations of a moving contact line was analyzed using two different dissipation mechanism. The contact lines relax to their equilibrium from a distorted configuration with a characteristic inverse decay time because of their anomalous elasticity. It is found that the velocity of the contact lines depends on the dissipation mechanism of the system.

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 62
  • Page 63
  • Page 64
  • Page 65
  • Current page 66
  • Page 67
  • Page 68
  • Page 69
  • Page 70
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet