Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Space and Planets (artistic image)
Credit: hdwallpaperim.com/

Gianluca Gregori

Professor of Physics

Research theme

  • Lasers and high energy density science
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Laboratory astroparticle physics
  • Oxford Centre for High Energy Density Science (OxCHEDS)
Gianluca.Gregori@physics.ox.ac.uk
Telephone: 01865 (2)82639
Clarendon Laboratory, room 029.8
  • About
  • Publications

Time-resolved fast turbulent dynamo in a laser plasma

(2020)

Authors:

AFA Bott, P Tzeferacos, L Chen, CAJ Palmer, A Rigby, A Bell, R Bingham, A Birkel, C Graziani, DH Froula, J Katz, M Koenig, MW Kunz, CK Li, J Meinecke, F Miniati, R Petrasso, H-S Park, BA Remington, B Reville, JS Ross, D Ryu, D Ryutov, F Séguin, TG White, AA Schekochihin, DQ Lamb, G Gregori
More details from the publisher

Electron acceleration in laboratory-produced turbulent collisionless shocks

Nature Physics Springer Nature 16 (2020) 916-920

Authors:

GF Swadling, A Grassi, HG Rinderknecht, DP Higginson, DD Ryutov, C Bruulsema, RP Drake, S Funk, S Glenzer, Gianluca Gregori, CK Li, BB Pollock, BA Remington, JS Ross, W Rozmus, Y Sakawa, A Spitkovsky, S Wilks, H-S Park

Abstract:

Astrophysical collisionless shocks are among the most powerful particle accelerators in the Universe. Generated by violent interactions of supersonic plasma flows with the interstellar medium, supernova remnant shocks are observed to amplify magnetic fields and accelerate electrons and protons to highly relativistic speeds. In the well-established model of diffusive shock acceleration, relativistic particles are accelerated by repeated shock crossings. However, this requires a separate mechanism that pre-accelerates particles to enable shock crossing. This is known as the ‘injection problem’, which is particularly relevant for electrons, and remains one of the most important puzzles in shock acceleration. In most astrophysical shocks, the details of the shock structure cannot be directly resolved, making it challenging to identify the injection mechanism. Here we report results from laser-driven plasma flow experiments, and related simulations, that probe the formation of turbulent collisionless shocks in conditions relevant to young supernova remnants. We show that electrons can be effectively accelerated in a first-order Fermi process by small-scale turbulence produced within the shock transition to relativistic non-thermal energies, helping overcome the injection problem. Our observations provide new insight into electron injection at shocks and open the way for controlled laboratory studies of the physics underlying cosmic accelerators.
More details from the publisher
Details from ORA
More details

Laboratory Study of Bilateral Supernova Remnants and Continuous MHD Shocks

ASTROPHYSICAL JOURNAL 896:2 (2020) ARTN 167

Authors:

P Mabey, B Albertazzi, G Rigon, J-R Marques, Caj Palmer, J Topp-Mugglestone, P Perez-Martin, F Kroll, F-E Brack, Te Cowan, U Schramm, K Falk, G Gregori, E Falize, M Koenig

Abstract:

© 2020. The American Astronomical Society. All rights reserved. Many supernova remnants (SNRs), such as G296.5+10.0, exhibit an axisymmetric or barrel shape. Such morphologies have previously been linked to the direction of the Galactic magnetic field, although this remains uncertain. These SNRs generate magnetohydrodynamic shocks in the interstellar medium, modifying its physical and chemical properties. The ability to study these shocks through observations is difficult due to the small spatial scales involved. In order to answer these questions, we perform a scaled laboratory experiment in which a laser-generated blast wave expands under the influence of a uniform magnetic field. The blast wave exhibits a spheroidal shape, whose major axis is aligned with the magnetic field, in addition to a more continuous shock front. The implications of our results are discussed in the context of astrophysical systems.
More details from the publisher
Details from ORA
More details

Axion detection through resonant photon-photon collisions

Physical Review D American Physical Society (APS) 101:9 (2020) 95018

Authors:

Ka Beyer, G Marocco, R Bingham, G Gregori
More details from the publisher
Details from ORA
More details
Details from ArXiV

Transport of high-energy charged particles through spatially-intermittent turbulent magnetic fields

Astrophysical Journal American Astronomical Society 892:2 (2020) 114

Authors:

LE Chen, AFA Bott, Petros Tzeferacos, Alexandra Rigby, Anthony Bell, Robert Bingham, C Graziani, Jonathan Katz, Richard Petrasso, Gianluca Gregori, Francesco Miniati

Abstract:

Identifying the sources of the highest energy cosmic rays requires understanding how they are deflected by the stochastic, spatially intermittent intergalactic magnetic field. Here we report measurements of energetic charged-particle propagation through a laser-produced magnetized plasma with these properties. We characterize the diffusive transport of the particles experimentally. The results show that the transport is diffusive and that, for the regime of interest for the highest-energy cosmic rays, the diffusion coefficient is unaffected by the spatial intermittency of the magnetic field.
More details from the publisher
Details from ORA

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 17
  • Page 18
  • Page 19
  • Page 20
  • Current page 21
  • Page 22
  • Page 23
  • Page 24
  • Page 25
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet