Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Space and Planets (artistic image)
Credit: hdwallpaperim.com/

Gianluca Gregori

Professor of Physics

Research theme

  • Lasers and high energy density science
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Laboratory astroparticle physics
  • Oxford Centre for High Energy Density Science (OxCHEDS)
Gianluca.Gregori@physics.ox.ac.uk
Telephone: 01865 (2)82639
Clarendon Laboratory, room 029.8
  • About
  • Publications

Axion-like-particle decay in strong electromagnetic backgrounds

Journal of High Energy Physics Springer 2019:12 (2019) 162

Authors:

B King, BM Dillon, K Beyer, Gianluca Gregori
More details from the publisher
Details from ORA
More details

Le ultime acquisizioni dal teatro di Terracina e l’eccezionale iscrizione del triumviro M. Emilio Lepido

Mélanges de l École française de Rome Antiquité OpenEdition (2019)

Authors:

Nicoletta Cassieri, Gian Luca Gregori, Jean-Baptiste Refalo-Bistagne
More details from the publisher

Inverse problem instabilities in large-scale modelling of matter in extreme conditions

Physics of Plasmas AIP Publishing 26:11 (2019) 112706

Authors:

MF Kasim, TP Galligan, J Topp-Mugglestone, G Gregori, Sam Vinko

Abstract:

Our understanding of physical systems often depends on our ability to match complex computational modeling with the measured experimental outcomes. However, simulations with large parameter spaces suffer from inverse problem instabilities, where similar simulated outputs can map back to very different sets of input parameters. While of fundamental importance, such instabilities are seldom resolved due to the intractably large number of simulations required to comprehensively explore parameter space. Here, we show how Bayesian inference can be used to address inverse problem instabilities in the interpretation of x-ray emission spectroscopy and inelastic x-ray scattering diagnostics. We find that the extraction of information from measurements on the basis of agreement with simulations alone is unreliable and leads to a significant underestimation of uncertainties. We describe how to statistically quantify the effect of unstable inverse models and describe an approach to experimental design that mitigates its impact.
More details from the publisher
Details from ORA
More details

Reply to: Reconsidering X-ray plasmons

NATURE PHOTONICS 13:11 (2019) 751-753

Authors:

Lb Fletcher, Hj Lee, T Doppner, E Galtier, B Nagler, P Heimann, C Fortmann, S LePape, T Ma, M Millot, A Pak, D Turnbull, Da Chapman, Do Gericke, J Vorberger, G Gregori, B Barbrel, Rw Falcone, C-C Kao, H Nuhn, J Welch, U Zastrau, P Neumayer, Jb Hastings, Sh Glenzer
More details from the publisher
Details from ORA
More details

(Un)-damning Subplots: The Principate of Domitian Between Literary Sources and Fresh Material Evidence

Illinois Classical Studies University of Illinois Press 44:2 (2019) 242-267

Authors:

Tommaso Spinelli, Gian Luca Gregori
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 18
  • Page 19
  • Page 20
  • Page 21
  • Current page 22
  • Page 23
  • Page 24
  • Page 25
  • Page 26
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet