Analytical estimates of proton acceleration in laser-produced turbulent plasmas
Journal of Plasma Physics Cambridge University Press 84:6 (2018) 905840608
Abstract:
With the advent of high power lasers, new opportunities have opened up for simulating astrophysical processes in the laboratory. We show that 2nd-order Fermi acceleration can be directly investigated at the National Ignition Facility, Livermore. This requires measuring the momentumspace diffusion of 3 MeV protons produced within a turbulent plasma generated by a laser. Treating Fermi acceleration as a biased diffusion process, we show analytically that a measurable broadening of the initial proton distribution is then expected for particles exiting the plasma.Implementation of a Faraday rotation diagnostic at the OMEGA laser facility
High Power Laser Science and Engineering Cambridge University Press 6:2018 (2018) e49
Abstract:
Magnetic field measurements in turbulent plasmas are often difficult to perform. Here we show that for ⩾ kG magnetic fields, a time-resolved Faraday rotation measurement can be made at the OMEGA laser facility. This diagnostic has been implemented using the Thomson scattering probe beam and the resultant path-integrated magnetic field has been compared with that of proton radiography. Accurate measurement of magnetic fields is essential for satisfying the scientific goals of many current laser–plasma experiments.Transport of high-energy charged particles through spatially-intermittent turbulent magnetic fields
(2018)
Setup for meV-resolution inelastic X-ray scattering measurements and X-ray diffraction at the Matter in Extreme Conditions endstation at the Linac Coherent Light Source
Review of Scientific Instruments AIP Publishing 89:10 (2018) 10F104
Abstract:
We describe a setup for performing inelastic X-ray scattering and X-ray diffraction measurements at the Matter in Extreme Conditions (MEC) endstation of the Linac Coherent Light Source. This technique is capable of performing high-, meV-resolution measurements of dynamic ion features in both crystalline and non-crystalline materials. A four-bounce silicon (533) monochromator was used in conjunction with three silicon (533) diced crystal analyzers to provide an energy resolution of ∼50 meV over a range of ∼500 meV in single shot measurements. In addition to the instrument resolution function, we demonstrate the measurement of longitudinal acoustic phonon modes in polycrystalline diamond. Furthermore, this setup may be combined with the high intensity laser drivers available at MEC to create warm dense matter and subsequently measure ion acoustic modes.Analytical estimates of proton acceleration in laser-produced turbulent plasmas
(2018)