Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Space and Planets (artistic image)
Credit: hdwallpaperim.com/

Gianluca Gregori

Professor of Physics

Research theme

  • Lasers and high energy density science
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Laboratory astroparticle physics
  • Oxford Centre for High Energy Density Science (OxCHEDS)
Gianluca.Gregori@physics.ox.ac.uk
Telephone: 01865 (2)82639
Clarendon Laboratory, room 029.8
  • About
  • Publications

The 'burial site' of the military along the Via Flaminia. New stele from the 5th-6th miles

Archeologia Classica 64 (2013) 349-369

Abstract:

Study of seven new military steles, found at Rome at V-VI miles along the Via Flaminia, in the context of other epigraphic discoveries in the area related to praetorian, ur-baniciani and speculator garrisons: in total more than 30 inscriptions.

X-ray scattering by many-particle systems

New Journal of Physics 15 (2013)

Authors:

BJB Crowley, G Gregori

Abstract:

This paper reviews the treatment of high-frequency Thomson scattering in the non-relativistic and near-relativistic regimes with the primary purpose of understanding the nature of the frequency redistribution correction to the differential cross-section. This correction is generally represented by a factor involving the ratio ω α /ω β of the scattered (α) to primary (β) frequencies of the radiation. In some formulae given in the literature, the ratio appears squared, in others it does not. In Compton scattering, the frequency change is generally understood to be due to the recoil of the particle as a result of energy and momentum conservation in the photon-electron system. In this case, the Klein-Nishina formula gives the redistribution factor as . In the case of scattering by a many-particle system, however, the frequency and momentum changes are no longer directly interdependent but depend also upon the properties of the medium, which are encoded in the dynamic structure factor. We show that the redistribution factor explicit in the quantum cross-section (that seen by a photon) is ω α /ω β, which is not squared. Formulae for the many-body cross-section given in the literature, in which the factor is squared, can often be attributed to a different (classical) definition of the cross-section, though not all authors are explicit about which definition they are using. What is shown not to be true is that the structure factor simply gives the ratio of the many-electron to one-electron differential cross-sections, as is sometimes supposed. Mixing up the cross-section definitions can lead to errors when describing x-ray scattering. We illustrate the nature of the discrepancy by deriving the energy-integrated angular distributions, with first-order relativistic corrections, for classical and quantum scattering measurements, as well as the radiative opacity for photon diffusion in a Thomson-scattering medium, which is generally considered to be governed by quantum processes. © IOP Publishing and Deutsche Physikalische Gesellschaft.
More details from the publisher
More details

Inelastic x-ray scattering from shocked liquid deuterium

Physical Review Letters 109:26 (2012)

Authors:

SP Regan, K Falk, G Gregori, PB Radha, SX Hu, TR Boehly, BJB Crowley, SH Glenzer, OL Landen, DO Gericke, T Döppner, DD Meyerhofer, CD Murphy, TC Sangster, J Vorberger

Abstract:

The Fermi-degenerate plasma conditions created in liquid deuterium by a laser-ablation - driven shock wave were probed with noncollective, spectrally resolved, inelastic x-ray Thomson scattering employing Cl Lyα line emission at 2.96 keV. These first x-ray Thomson scattering measurements of the microscopic properties of shocked deuterium show an inferred spatially averaged electron temperature of 8±5 eV, an electron density of 2.2(±0.5)×1023 cm-3, and an ionization of 0.8 (-0.25, +0.15). Two-dimensional hydrodynamic simulations using equation-of-state models suited for the extreme parameters occurring in inertial confinement fusion research and planetary interiors are consistent with the experimental results. © 2012 American Physical Society.
More details from the publisher
More details
More details

Turbulent Plasma in the Lab

Physics American Physical Society (APS) 5 (2012) 141

Authors:

Gianluca Gregori, Brian Reville
More details from the publisher

Laboratory investigations on the origins of cosmic rays

Plasma Physics and Controlled Fusion 54:12 (2012)

Authors:

Y Kuramitsu, Y Sakawa, T Morita, T Ide, K Nishio, H Tanji, H Aoki, S Dono, CD Gregory, JN Waugh, N Woolsey, A Dizière, A Pelka, A Ravasio, B Loupias, M Koenig, SA Pikuz, YT Li, Y Zhang, X Liu, JY Zhong, J Zhang, G Gregori, N Nakanii, K Kondo, Y Mori, E Miura, R Kodama, Y Kitagawa, K Mima, KA Tanaka, H Azechi, T Moritaka, Y Matsumoto, T Sano, A Mizuta, N Ohnishi, M Hoshino, H Takabe

Abstract:

We report our recent efforts on the experimental investigations related to the origins of cosmic rays. The origins of cosmic rays are long standing open issues in astrophysics. The galactic and extragalactic cosmic rays are considered to be accelerated in non-relativistic and relativistic collisionless shocks in the universe, respectively. However, the acceleration and transport processes of the cosmic rays are not well understood, and how the collisionless shocks are created is still under investigation. Recent high-power and high-intensity laser technologies allow us to simulate astrophysical phenomena in laboratories. We present our experimental results of collisionless shock formations in laser-produced plasmas. © 2012 IOP Publishing Ltd.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 42
  • Page 43
  • Page 44
  • Page 45
  • Current page 46
  • Page 47
  • Page 48
  • Page 49
  • Page 50
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet