Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Space and Planets (artistic image)
Credit: hdwallpaperim.com/

Gianluca Gregori

Professor of Physics

Research theme

  • Lasers and high energy density science
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Laboratory astroparticle physics
  • Oxford Centre for High Energy Density Science (OxCHEDS)
Gianluca.Gregori@physics.ox.ac.uk
Telephone: 01865 (2)82639
Clarendon Laboratory, room 029.8
  • About
  • Publications

Self-organized electromagnetic field structures in laser-produced counter-streaming plasmas

Nature Physics 8:11 (2012) 809-812

Authors:

NL Kugland, DD Ryutov, PY Chang, RP Drake, G Fiksel, DH Froula, SH Glenzer, G Gregori, M Grosskopf, M Koenig, Y Kuramitsu, C Kuranz, MC Levy, E Liang, J Meinecke, F Miniati, T Morita, A Pelka, C Plechaty, R Presura, A Ravasio, BA Remington, B Reville, JS Ross, Y Sakawa, A Spitkovsky, H Takabe, HS Park

Abstract:

Self-organization occurs in plasmas when energy progressively transfers from smaller to larger scales in an inverse cascade. Global structures that emerge from turbulent plasmas can be found in the laboratory and in astrophysical settings; for example, the cosmic magnetic field, collisionless shocks in supernova remnants and the internal structures of newly formed stars known as Herbig-Haro objects. Here we show that large, stable electromagnetic field structures can also arise within counter-streaming supersonic plasmas in the laboratory. These surprising structures, formed by a yet unexplained mechanism, are predominantly oriented transverse to the primary flow direction, extend for much larger distances than the intrinsic plasma spatial scales and persist for much longer than the plasma kinetic timescales. Our results challenge existing models of counter-streaming plasmas and can be used to better understand large-scale and long-time plasma self-organization. © 2012 Macmillan Publishers Limited. All rights reserved.
More details from the publisher

Comparative merits of the memory function and dynamic local-field correction of the classical one-component plasma

PHYSICAL REVIEW E 85:5 (2012) ARTN 056407

Authors:

James P Mithen, Jerome Daligault, Gianluca Gregori
More details from the publisher
More details

Molecular Dynamics Simulations for the Shear Viscosity of the One-Component Plasma

CONTRIBUTIONS TO PLASMA PHYSICS 52:1 (2012) 58-61

Authors:

JP Mithen, J Daligault, G Gregori
More details from the publisher

Observation of inhibited electron-ion coupling in strongly heated graphite.

Sci Rep 2 (2012) 889

Authors:

TG White, J Vorberger, CRD Brown, BJB Crowley, P Davis, SH Glenzer, JWO Harris, DC Hochhaus, S Le Pape, T Ma, CD Murphy, P Neumayer, LK Pattison, S Richardson, DO Gericke, G Gregori

Abstract:

Creating non-equilibrium states of matter with highly unequal electron and lattice temperatures (T(ele)≠T(ion)) allows unsurpassed insight into the dynamic coupling between electrons and ions through time-resolved energy relaxation measurements. Recent studies on low-temperature laser-heated graphite suggest a complex energy exchange when compared to other materials. To avoid problems related to surface preparation, crystal quality and poor understanding of the energy deposition and transport mechanisms, we apply a different energy deposition mechanism, via laser-accelerated protons, to isochorically and non-radiatively heat macroscopic graphite samples up to temperatures close to the melting threshold. Using time-resolved x ray diffraction, we show clear evidence of a very small electron-ion energy transfer, yielding approximately three times longer relaxation times than previously reported. This is indicative of the existence of an energy transfer bottleneck in non-equilibrium warm dense matter.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Quantum hydrodynamics of strongly coupled electron fluids

PHYSICAL REVIEW E 85:4 (2012) ARTN 046408

Authors:

R Schmidt, BJB Crowley, J Mithen, G Gregori
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 47
  • Page 48
  • Page 49
  • Page 50
  • Current page 51
  • Page 52
  • Page 53
  • Page 54
  • Page 55
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet