Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Space and Planets (artistic image)
Credit: hdwallpaperim.com/

Gianluca Gregori

Professor of Physics

Research theme

  • Lasers and high energy density science
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Laboratory astroparticle physics
  • Oxford Centre for High Energy Density Science (OxCHEDS)
Gianluca.Gregori@physics.ox.ac.uk
Telephone: 01865 (2)82639
Clarendon Laboratory, room 029.8
  • About
  • Publications

Characterizing counter-streaming interpenetrating plasmas relevant to astrophysical collisionless shocks

Physics of Plasmas 19:5 (2012)

Authors:

JS Ross, SH Glenzer, P Amendt, R Berger, L Divol, NL Kugland, OL Landen, C Plechaty, B Remington, D Ryutov, W Rozmus, DH Froula, G Fiksel, C Sorce, Y Kuramitsu, T Morita, Y Sakawa, H Takabe, RP Drake, M Grosskopf, C Kuranz, G Gregori, J Meinecke, CD Murphy, M Koenig, A Pelka, A Ravasio, T Vinci, E Liang, R Presura, A Spitkovsky, F Miniati, HS Park

Abstract:

A series of Omega experiments have produced and characterized high velocity counter-streaming plasma flows relevant for the creation of collisionless shocks. Single and double CH2 foils have been irradiated with a laser intensity of ∼ 1016 W/cm2. The laser ablated plasma was characterized 4 mm from the foil surface using Thomson scattering. A peak plasma flow velocity of 2000 km/s, an electron temperature of ∼ 110 eV, an ion temperature of ∼ 30 eV, and a density of ∼ 1018 cm -3 were measured in the single foil configuration. Significant increases in electron and ion temperatures were seen in the double foil geometry. The measured single foil plasma conditions were used to calculate the ion skin depth, c/ωpi ∼ 0.16 mm, the interaction length, lint, of ∼ 8 mm, and the Coulomb mean free path, λmfp ∼ 27 mm. With c/ωpi ≪ l int ≪λmfp, we are in a regime where collisionless shock formation is possible. © 2012 American Institute of Physics.
More details from the publisher
More details

Design considerations for unmagnetized collisionless-shock measurements in homologous flows

Astrophysical Journal 749:2 (2012)

Authors:

RP Drake, G Gregori

Abstract:

The subject of this paper is the design of practical laser experiments that can produce collisionless shocks mediated by the Weibel instability. Such shocks may be important in a wide range of astrophysical systems. Three issues are considered. The first issue is the implications of the fact that such experiments will produce expanding flows that are approximately homologous. As a result, both the velocity and the density of the interpenetrating plasma streams will be time dependent. The second issue is the implications of the linear theory of the Weibel instability. For the experiments, the instability is in a regime where standard simplifications do not apply. It appears feasible but non-trivial to obtain adequate growth. The third issue is collisionality. The need to keep resistive magnetic-field dissipation small enough implies that the plasmas should not be allowed to cool substantially. © 2012. The American Astronomical Society. All rights reserved.
More details from the publisher
More details

Measurement of radiative shock properties by X-ray Thomson scattering

Physical Review Letters 108:14 (2012)

Authors:

AJ Visco, RP Drake, SH Glenzer, T Döppner, G Gregori, DH Froula, MJ Grosskopf

Abstract:

X-ray Thomson scattering has enabled us to measure the temperature of a shocked layer, produced in the laboratory, that is relevant to shocks emerging from supernovas. High energy lasers are used to create a shock in argon gas which is probed by x-ray scattering. The scattered, inelastic Compton feature allows inference of the electron temperature. It is measured to be 34 eV in the radiative precursor and ∼60eV near the shock. Comparison of energy fluxes implied by the data demonstrates that the shock wave is strongly radiative. © 2012 American Physical Society.
More details from the publisher

26pYC-8 レーザー生成非一様プラブマ中の衝撃波による磁場増幅(26pYC 領域2,宇宙線・宇宙物理領域,領域11合同招待講演 プラズマ宇宙物理・プラズマ基礎(流体・衝撃波・リコネクション),領域2(プラズマ基礎・プラズマ科学・核融合プラズマ・プラズマ宇宙物理))

(2012) 276

Authors:

蔵満 康浩, 坂和 洋一, 森田 太智, 井出 尭夫, 西尾 健斗, CD Gregory, JN Waugh, N Booth, R Heathcote, C Murphy, G Gregori, J Smallcombe, C Barton, A Diziere, M Koenig, N Woolsey, 佐野 孝好, 高部 英明
More details from the publisher

Self-consistent measurement of the equation of state of liquid deuterium

High Energy Density Physics 8:1 (2012) 76-80

Authors:

K Falk, SP Regan, J Vorberger, MA Barrios, TR Boehly, DE Fratanduono, SH Glenzer, DG Hicks, SX Hu, CD Murphy, PB Radha, S Rothman, AP Jephcoat, JS Wark, DO Gericke, G Gregori

Abstract:

We combine experiments and theoretical models to characterize warm dense deuterium. A shockwave was driven in a planar target by the OMEGA laser without a standard pusher making the analysis independent of a quartz or aluminium pressure standard. The conditions of the shocked material were diagnosed with VISAR and optical pyrometry which yields the shock velocity (16.9 ± 0.9 km/s) and the temperature (0.57 ± 0.05 eV). We find a self-consistent description of the data when using ab initio simulations (DFT-MD), but not for other equation of state (EOS) models tested. © 2011 Elsevier B.V.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 45
  • Page 46
  • Page 47
  • Page 48
  • Current page 49
  • Page 50
  • Page 51
  • Page 52
  • Page 53
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet