Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Space and Planets (artistic image)
Credit: hdwallpaperim.com/

Gianluca Gregori

Professor of Physics

Research theme

  • Lasers and high energy density science
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Laboratory astroparticle physics
  • Oxford Centre for High Energy Density Science (OxCHEDS)
Gianluca.Gregori@physics.ox.ac.uk
Telephone: 01865 (2)82639
Clarendon Laboratory, room 029.8
  • About
  • Publications

X-ray scattering from warm dense iron

High Energy Density Physics 9:3 (2013) 573-577

Authors:

S White, G Nersisyan, B Kettle, TWJ Dzelzainis, K McKeever, CLS Lewis, A Otten, K Siegenthaler, D Kraus, M Roth, T White, G Gregori, DO Gericke, R Baggott, DA Chapman, K Wünsch, J Vorberger, D Riley

Abstract:

We have carried out X-ray scattering experiments on iron foil samples that have been compressed and heated using laser-driven shocks created with the VULCAN laser system at the Rutherford-Appleton Laboratory. This is the highest Z element studied in such experiments so far and the first time scattering from warm dense iron has been reported. Because of the importance of iron in telluric planets, the work is relevant to studies of warm dense matter in planetary interiors. We report scattering results as well as shock breakout results that, in conjunction with hydrodynamic simulations, suggest the target has been compressed to a molten state at several 100GPa pressure. Initial comparison with modelling suggests more work is needed to understand the structure factor of warm dense iron. © 2013.
More details from the publisher
More details

Spectroscopic and X-Ray Scattering Models in SPECT3D

Institute of Electrical and Electronics Engineers (IEEE) (2013) 1-190

Authors:

IE Golovkin, JJ MacFarlane, PR Woodruff, SK Kulkarni, IM Hall, Gianluca Gregori, JE Bailey, E Harding, T Ao
More details from the publisher

Radiative shocks produced from spherical cryogenic implosions at the National Ignition Facility

Physics of Plasmas 20:5 (2013)

Authors:

A Pak, L Divol, G Gregori, S Weber, J Atherton, R Bennedetti, DK Bradley, D Callahan, DT Casey, E Dewald, T Döppner, MJ Edwards, JA Frenje, S Glenn, GP Grim, D Hicks, WW Hsing, N Izumi, OS Jones, MG Johnson, SF Khan, JD Kilkenny, JL Kline, GA Kyrala, J Lindl, OL Landen, S Le Pape, T Ma, A Macphee, BJ Macgowan, AJ Mackinnon, L Masse, NB Meezan, JD Moody, RE Olson, JE Ralph, HF Robey, HS Park, BA Remington, JS Ross, R Tommasini, RPJ Town, V Smalyuk, SH Glenzer, EI Moses

Abstract:

Spherically expanding radiative shock waves have been observed from inertially confined implosion experiments at the National Ignition Facility. In these experiments, a spherical fusion target, initially 2 mm in diameter, is compressed via the pressure induced from the ablation of the outer target surface. At the peak compression of the capsule, x-ray and nuclear diagnostics indicate the formation of a central core, with a radius and ion temperature of ∼20 μm and ∼ 2 keV, respectively. This central core is surrounded by a cooler compressed shell of deuterium-tritium fuel that has an outer radius of ∼40 μm and a density of >500 g/cm3. Using inputs from multiple diagnostics, the peak pressure of the compressed core has been inferred to be of order 100 Gbar for the implosions discussed here. The shock front, initially located at the interface between the high pressure compressed fuel shell and surrounding in-falling low pressure ablator plasma, begins to propagate outwards after peak compression has been reached. Approximately 200 ps after peak compression, a ring of x-ray emission created by the limb-brightening of a spherical shell of shock-heated matter is observed to appear at a radius of ∼100 μm. Hydrodynamic simulations, which model the experiment and include radiation transport, indicate that the sudden appearance of this emission occurs as the post-shock material temperature increases and upstream density decreases, over a scale length of ∼10 μm, as the shock propagates into the lower density (∼1 g/cc), hot (∼250 eV) plasma that exists at the ablation front. The expansion of the shock-heated matter is temporally and spatially resolved and indicates a shock expansion velocity of ∼300 km/s in the laboratory frame. The magnitude and temporal evolution of the luminosity produced from the shock-heated matter was measured at photon energies between 5.9 and 12.4 keV. The observed radial shock expansion, as well as the magnitude and temporal evolution of the luminosity from the shock-heated matter, is consistent with 1-D radiation hydrodynamic simulations. Analytic estimates indicate that the radiation energy flux from the shock-heated matter is of the same order as the in-flowing material energy flux, and suggests that this radiation energy flux modifies the shock front structure. Simulations support these estimates and show the formation of a radiative shock, with a precursor that raises the temperature ahead of the shock front, a sharp μ m-scale thick spike in temperature at the shock front, followed by a post-shock cooling layer. © 2013 AIP Publishing LLC.
More details from the publisher
More details

Visualizing electromagnetic fields in laser-produced counter-streaming plasma experiments for collisionless shock laboratory astrophysics

Physics of Plasmas 20:5 (2013)

Authors:

NL Kugland, JS Ross, PY Chang, RP Drake, G Fiksel, DH Froula, SH Glenzer, G Gregori, M Grosskopf, C Huntington, M Koenig, Y Kuramitsu, C Kuranz, MC Levy, E Liang, D Martinez, J Meinecke, F Miniati, T Morita, A Pelka, C Plechaty, R Presura, A Ravasio, BA Remington, B Reville, DD Ryutov, Y Sakawa, A Spitkovsky, H Takabe, HS Park

Abstract:

Collisionless shocks are often observed in fast-moving astrophysical plasmas, formed by non-classical viscosity that is believed to originate from collective electromagnetic fields driven by kinetic plasma instabilities. However, the development of small-scale plasma processes into large-scale structures, such as a collisionless shock, is not well understood. It is also unknown to what extent collisionless shocks contain macroscopic fields with a long coherence length. For these reasons, it is valuable to explore collisionless shock formation, including the growth and self-organization of fields, in laboratory plasmas. The experimental results presented here show at a glance with proton imaging how macroscopic fields can emerge from a system of supersonic counter-streaming plasmas produced at the OMEGA EP laser. Interpretation of these results, plans for additional measurements, and the difficulty of achieving truly collisionless conditions are discussed. Future experiments at the National Ignition Facility are expected to create fully formed collisionless shocks in plasmas with no pre-imposed magnetic field. © 2013 AIP Publishing LLC.
More details from the publisher
More details

Comparison between x-ray scattering and velocity-interferometry measurements from shocked liquid deuterium

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 87:4 (2013)

Authors:

K Falk, SP Regan, J Vorberger, BJB Crowley, SH Glenzer, SX Hu, CD Murphy, PB Radha, AP Jephcoat, JS Wark, DO Gericke, G Gregori

Abstract:

The equation of state of light elements is essential to understand the structure of Jovian planets and inertial confinement fusion research. The Omega laser was used to drive a planar shock wave in the cryogenically cooled deuterium, creating warm dense matter conditions. X-ray scattering was used to determine the spectrum near the boundary of the collective and noncollective scattering regimes using a narrow band x-ray source in backscattering geometry. Our scattering spectra are thus sensitive to the individual electron motion as well as the collective plasma behavior and provide a measurement of the electron density, temperature, and ionization state. Our data are consistent with velocity-interferometry measurements previously taken on the same shocked deuterium conditions and presented by K. Falk. This work presents a comparison of the two diagnostic systems and offers a detailed discussion of challenges encountered. ©2013 American Physical Society.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 44
  • Page 45
  • Page 46
  • Page 47
  • Current page 48
  • Page 49
  • Page 50
  • Page 51
  • Page 52
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet