Plasma switch as a temporal overlap tool for pump-probe experiments at FEL facilities
Journal of Instrumentation 7:8 (2012)
Abstract:
We have developed an easy-to-use and reliable timing tool to determine the arrival time of an optical laser and a free electron laser (FEL) pulses within the jitter limitation. This timing tool can be used from XUV to X-rays and exploits high FELs intensities. It uses a shadowgraph technique where we optically (at 800 nm) image a plasma created by an intense XUV or X-ray FEL pulse on a transparent sample (glass slide) directly placed at the pump - probe sample position. It is based on the physical principle that the optical properties of the material are drastically changed when its free electron density reaches the critical density. At this point the excited glass sample becomes opaque to the optical laser pulse. The ultra-short and intense XUV or X-ray FEL pulse ensures that a critical electron density can be reached via photoionization and subsequent collisional ionization within the XUV or X-ray FEL pulse duration or even faster. This technique allows to determine the relative arrival time between the optical laser and the FEL pulses in only few single shots with an accuracy mainly limited by the optical laser pulse duration and the jitter between the FEL and the optical laser. Considering the major interest in pump-probe experiments at FEL facilities in general, such a femtosecond resolution timing tool is of utmost importance. © 2012 IOP Publishing Ltd and Sissa Medialab srl.Testing quantum mechanics in non-Minkowski space-time with high power lasers and 4 th generation light sources
Scientific Reports 2 (2012)
Abstract:
A common misperception of quantum gravity is that it requires accessing energies up to the Planck scale of 10 19 GeV, which is unattainable from any conceivable particle collider. Thanks to the development of ultra-high intensity optical lasers, very large accelerations can be now the reached at their focal spot, thus mimicking, by virtue of the equivalence principle, a non Minkowski space-time. Here we derive a semiclassical extension of quantum mechanics that applies to different metrics, but under the assumption of weak gravity. We use our results to show that Thomson scattering of photons by uniformly accelerated electrons predicts an observable effect depending upon acceleration and local metric. In the laboratory frame, a broadening of the Thomson scattered x ray light from a fourth generation light source can be used to detect the modification of the metric associated to electrons accelerated in the field of a high power optical laser.Experimental Observation of Ultra-Slow Electron-Lattice Coupling in Highly Non-Equilibrium Graphite
Institute of Electrical and Electronics Engineers (IEEE) 1 (2012) 1p-186-1p-186
X-RAY SPECTRA OF LASER IRRADIATED METAL FOILS FOR X-RAY THOMSON SCATTERING OF WARM DENSE MATTER ON THE Z-ACCELERATOR
Institute of Electrical and Electronics Engineers (IEEE) 1 (2012) 115-120
X-Ray Scattering from Warm Dense Iron* *Work supported by EPSRC grant EP/G007462/01
Institute of Electrical and Electronics Engineers (IEEE) (2012) 1c-3-1c-3