Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Herz Group

Prof Laura Herz FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Semiconductors group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Laura.Herz@physics.ox.ac.uk
Google Scholar
Publons/WoS
  • About
  • Publications

Controlling and Understanding the Effects of Crystal Size in Vapor Deposited Metal-Halide Perovskite Solar Cells

Fundacio Scito (2021)

Authors:

Kilian Lohmann, Jay Patel, Mathias Rothmann, Chelsea Xia, Robert Oliver, Laura Herz, Henry Snaith, Michael Johnston
More details from the publisher

The impact of phase segregation in mixed halide perovskites: a matter of charge recombination rather than transport

Fundacio Scito (2021)

Authors:

Silvia Motti, Jay Patel, Robert Oliver, Henry Snaith, Michael Johnston, Laura Herz
More details from the publisher

Understanding the crystallographic and microstructural properties of hybrid perovskite thin films through electron microscopy

Fundacio Scito (2021)

Authors:

Mathias Uller Rothmann, Laura Herz, Juliane Borchert, Kilian Lohmann, Colum M. O'Leary, Judy Kim, Laura Clark, Henry Snaith, Michael Johnston, Peter Nellist, Alex Sheader
More details from the publisher

Polarons and charge localization in metal-halide semiconductors for photovoltaic and light-emitting devices

Advanced Materials Wiley 33:24 (2021) 2007057

Authors:

Leonardo RV Buizza, Laura M Herz

Abstract:

Metal-halide semiconductors have shown excellent performance in optoelectronic applications such as solar cells, light-emitting diodes, and detectors. In this review the role of charge–lattice interactions and polaron formation in a wide range of these promising materials, including perovskites, double perovskites, Ruddlesden–Popper layered perovskites, nanocrystals, vacancy-ordered, and other novel structures, is summarized. The formation of Fröhlich-type “large” polarons in archetypal bulk metal-halide ABX3 perovskites and its dependence on A-cation, B-metal, and X-halide composition, which is now relatively well understood, are discussed. It is found that, for nanostructured and novel metal-halide materials, a larger variation in the strengths of polaronic effects is reported across the literature, potentially deriving from variations in potential barriers and the presence of interfaces at which lattice relaxation may be enhanced. Such findings are further discussed in the context of different experimental approaches used to explore polaronic effects, cautioning that firm conclusions are often hampered by the presence of alternate processes and interactions giving rise to similar experimental signatures. Overall, a complete understanding of polaronic effects will prove essential given their direct influence on optoelectronic properties such as charge-carrier mobilities and emission spectra, which are critical to the performance of energy and optoelectronic applications.
More details from the publisher
Details from ORA
More details
More details

Nanowires: A New Horizon for Polarization-resolved Terahertz Time-domain Spectroscopy

2021 Conference on Lasers and Electro-Optics, CLEO 2021 - Proceedings (2021)

Authors:

K Peng, D Jevtics, F Zhang, S Sterzl, DA Damry, MU Rothmann, B Guilhabert, MJ Strain, H Tan, LM Herz, L Fu, MD Dawson, A Hurtado, C Jagadish, MB Johnston

Abstract:

In this study, a novel type of broadband polarization-sensitive photoconductive terahertz detectors based on crossed nanowire networks is demonstrated, enabling fast and precise polarization terahertz time-domain spectroscopy measurements.

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 16
  • Page 17
  • Page 18
  • Page 19
  • Current page 20
  • Page 21
  • Page 22
  • Page 23
  • Page 24
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet