Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Herz Group

Prof Laura Herz FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Semiconductors group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Laura.Herz@physics.ox.ac.uk
Google Scholar
Publons/WoS
  • About
  • Publications

Photoactive Thiophene‐Enriched Tetrathienonaphthalene‐Based Covalent Organic Frameworks

Small Wiley (2025) e11000

Authors:

Tianhao Xue, Marcello Righetto, Roman Guntermann, Shizhe Wang, Dominic Blätte, Zehua Xu, Andreas Weis, Ignacio Munoz‐Alonso, Dana D Medina, Achim Hartschuh, Laura M Herz, Thomas Bein

Abstract:

The optoelectronic properties of covalent organic frameworks (COFs) can be controlled by the design of their molecular building blocks and assembly. Here, a facile and efficient synthetic route is reported for the novel thiophene‐enriched tetrathienonaphthalene (TTN)‐based node 4,4′,4″,4′″‐(naphtho[1,2‐b:4,3‐b′:5,6‐b″:8,7‐b″′]tetrathiophene‐2,5,8,11‐tetrayl)tetraaniline (TTNTA) for constructing imine‐linked COFs. Utilizing TTNTA, highly crystalline, thiophene‐enriched donor–donor (D–D) and donor–acceptor (D–A) COFs, denoted as TT COF and BDT(BT)2 COF, are synthesized using two distinct aldehyde‐functionalized linear linkers: [2,2′‐bithiophene]‐5,5′‐dicarbaldehyde (TT) and 7,7′‐(4,8‐diethoxybenzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl)bis(benzo[c][1,2,5]thiadiazole‐4‐carbaldehyde) (BDT(BT)2), respectively. Highly crystalline and oriented TTNTA COF films on various substrates via a solvothermal method enabled further comprehensive optical and electronic characterizations. Optical‐pump terahertz‐probe spectroscopy revealed effective charge‐carrier mobility values φμ = 0.34 ± 0.04 and 0.18 ± 0.02 cm2V−1s−1 for TT and BDT(BT)2 COF films, respectively. These results reveal distinct charge‐transport characteristics and provide mechanistic insights into their ultrafast charge‐carrier dynamics. The COFs are demonstrated to be photoactive, showing promising potential as photocathodes without co‐catalysts in photoelectrochemical water splitting, with notable photocurrent densities of 10 and 15.3 µA cm−2 after 1 h illumination, respectively. This work highlights the potential of TTNTA‐based COFs in optoelectronic applications and provides insights into the design of thiophene‐enriched COFs with high crystallinity and photoactive behavior.
More details from the publisher
Details from ORA
More details

Impact of Halide Alloying on the Phase Segregation of Mixed‐Halide Perovskites

Small Structures Wiley (2025) e202500545

Authors:

Joshua RS Lilly, Vincent J‐Y Lim, Jay B Patel, Siyu Yan, Jae Eun Lee, Michael B Johnston, Laura M Herz

Abstract:

Mixed‐halide perovskites are ideal mid‐ and wide‐gap absorbers for multijunction solar cells, but stable photovoltaic performance is severely hampered by halide segregation. This study reveals that crystalline film quality and halide segregation are critically affected by bromide fraction x in CH3NH3Pb(I1−xBr x )3 because of macrostrain and ordered‐phase formation. X‐ray diffractometry across stoichiometries spanning 22 bromide fractions demonstrates that central compositions near x = 0.5 form two macrostrained phases, which exhibit halide segregation under light at different rates. While the overall amplitude of phase segregation follows a broadly symmetric distribution in compositional space, maximized near x = 0.5, the potentially ordered compositions of CH3NH3PbIBr2 and CH3NH3PbI2Br diverge sharply, presenting particularly stable and unstable scenarios, respectively. Notably, halide segregation is shown to occur even below the widely quoted perceived threshold of x = 0.2. Such analysis highlights promising approaches to mitigate halide segregation, through engineering of macrostrained phases and local atomistic ordering. Together, these observations provide crucial benchmarks for proposed models of halide segregation and establish new routes toward segregation‐resistant materials for multijunction perovskite‐based photovoltaics.
More details from the publisher
Details from ORA
More details

Correlated Vibrational and Electronic Signatures of Surface Disorder in CsPbBr<sub>3</sub> Nanocrystals.

ACS nano (2025)

Authors:

Thomas B Haward, Vincent J-Y Lim, Ihor Cherniukh, Maryna I Bodnarchuk, Maksym V Kovalenko, Laura M Herz

Abstract:

Lead halide perovskite nanocrystals have emerged as promising candidates for classical light-emitting devices and single-photon sources, owing to their high photoluminescence quantum yield, narrow emission line width and tunable emission. Judicious choice of ligands to passivate nanocrystal surfaces has proven to be critical to the structural stability and optoelectronic performance of such nanocrystals. While many ligands have been deployed, the resulting quality of the nanocrystal surface can be difficult to assess directly. Here, we demonstrate ultralow frequency Raman spectroscopy as a powerful tool to resolve surface-sensitive changes in size and ligand choice in perovskite nanocrystals. By investigating a size series of CsPbBr3 nanocrystals from the strong (5 nm) to the weak (28 nm) confinement range, we show that the line width of Raman-active modes provides a highly selective metric for surface disorder and quality. We further examine a series of 28 nm diameter nanocrystals with four different zwitterionic ligands, unravelling clear links between varying steric effects and surface quality evident from Raman analysis. Photoluminescence and THz photoconductivity probes reveal an evident correlation of charge-carrier dynamics and radiative emission yields with ligand chemistry and surface quality inferred from phonon broadening. We further show that surface defects preferentially trap hot charge carriers, which affects exciton stability and radiative emission yields. Overall, our approach offers powerful insights into optimizing nanocrystal-ligand boundaries to enhance the performance of nanoscale quantum light sources and optoelectronic devices.
More details from the publisher
More details
More details

Control Over the Microstructure of Vapor‐Deposited CsPbBr 3 Enhances Amplified Spontaneous Emission

Advanced Optical Materials Wiley (2025) e02160

Authors:

Qimu Yuan, Weilun Li, Ford M Wagner, Vincent J‐Y Lim, Laura M Herz, Joanne Etheridge, Michael B Johnston

Abstract:

Inorganic cesium‐based metal halide perovskite (MHP) semiconductors have great potential as active layers in optoelectronic devices, such as perovskite light‐emitting diodes (PeLEDs) and perovskite lasers. However, precise control of crystal type, quality, and thickness is required to create high‐performance and reproducible devices. Vapor‐phase vacuum deposition enables fabrication of MHP thin films and devices with excellent uniformity and control over layer thickness, although a full understanding of crystal growth mechanisms and products has proved elusive. Here, conditions of vapor co‐deposition of CsBr and PbBr are related with the optical performance and atomic microstructure of resulting CsPbBr3 thin films. It is found that the structure is predominantly photoactive γ‐CsPbBr3 over a wide range of conditions, but the presence of impurity phases and Ruddlesden–Popper (RP) planar defects both degrade optical performance as quantified through measured amplified spontaneous emission (ASE) thresholds. Furthermore, the atomic structure of the dominant impurity phases is resolved: CsPb2Br5 and Cs4PbBr6. It is revealed that a small nominal excess of CsBr‐precursor flux during co‐evaporation can significantly enhance the nucleation of thin films, resulting in well‐defined grains greater than 500 nm in size and the relative suppression of RP planar defects. Such films exhibit intensified photoluminescence (PL) emission and a reduced ASE threshold of 30.9 µJ cm−2.
More details from the publisher
Details from ORA
More details

Optically Determined Hole Effective Mass in Tin-Iodide Perovskite Films

ACS Energy Letters American Chemical Society 10:9 (2025) 4589-4595

Authors:

Vincent J-Y Lim, Marcello Righetto, Michael D Farrar, Thomas Siday, Henry J Snaith, Michael B Johnston, Laura M Herz

Abstract:

Tin-halide perovskites currently offer the best photovoltaic performance of lead-free metal-halide semiconductors. However, their transport properties are mostly dominated by holes, owing to ubiquitous self-doping. Here we demonstrate a noncontact, optical spectroscopic method to determine the effective mass of the dominant hole species in FASnI3, by investigating a series of thin films with hole densities finely tuned through either SnF2 additive concentration or controlled exposure to air. We accurately determine the plasma frequency from mid-infrared reflectance spectra by modeling changes in the vibrational response of the FA cation as the plasma edge shifts through the molecular resonance. Our approach yields a hole effective mass of 0.28m e for FASnI3 and demonstrates parabolicity within ∼100 meV of the valence band edge. An absence of Fano contributions further highlights insignificant coupling between the hole plasma and FA cation. Overall, this approach enables noncontact screening of thin-film materials for optimized charge-carrier transport properties.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet