Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Herz Group

Prof Laura Herz FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Semiconductors group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Laura.Herz@physics.ox.ac.uk
Google Scholar
Publons/WoS
  • About
  • Publications

Focused-probe STEM Ptychography: Developments and Opportunities

Microscopy and Microanalysis Oxford University Press (OUP) 26:S2 (2020) 470-471

Authors:

Colum O'Leary, Emanuela Liberti, Gerardo Martinez, Christopher Allen, Chen Huang, Mathias Rothmann, Hui Luo, Judy Kim, Laura Herz, Hazel Assender, Lewys Jones, Angus Kirkland, Peter Nellist
More details from the publisher

Postpassivation of Multication Perovskite with Rubidium Butyrate

ACS Photonics American Chemical Society (ACS) (2020) acsphotonics.0c00878

Authors:

José Carlos Germino, Rodrigo Szostak, Silvia G Motti, Raphael F Moral, Paulo E Marchezi, Heitor S Seleghini, Luiz G Bonato, Francineide Lopes de Araújo, Teresa DZ Atvars, Laura M Herz, David Fenning, Anders Hagfeldt, Ana Flávia Nogueira
More details from the publisher
Details from ORA
More details

Understanding the Performance-Limiting Factors of Cs2AgBiBr6 Double-Perovskite Solar Cells

ACS Energy Letters American Chemical Society (ACS) 5:7 (2020) 2200-2207

Authors:

Giulia Longo, Suhas Mahesh, Leonardo RV Buizza, Adam D Wright, Alexandra J Ramadan, Mojtaba Abdi-Jalebi, Pabitra K Nayak, Laura M Herz, Henry J Snaith
More details from the publisher
More details

Metal composition influences optoelectronic quality in mixed-metal lead-tin triiodide perovskite solar absorbers

Energy and Environmental Science Royal Society of Chemistry 13:6 (2020) 1776-1787

Authors:

Matthew Klug, Rebecca Milot, Jay Patel, Thomas Green, Harry Sansom, Michael Farrar, Alexandra Ramadan, Samuele Martani, Zhiping Wang, Bernard Wenger, James Ball, Liam Langshaw, Annamaria Petrozza, Michael Johnston, Laura Herz, Henry J Snaith

Abstract:

Current designs for all-perovskite multi-junction solar cells require mixed-metal Pb-Sn compositions to achieve narrower band gaps than are possible with their neat Pb counterparts. The lower band gap range achievable with mixed-metal Pb-Sn perovskites also encompasses the 1.3 to 1.4 eV range that is theoretically ideal for maximising the efficiency of single-junction devices. Here we examine the optoelectronic quality and photovoltaic performance of the ((HC(NH2)2)0.83Cs0.17)(Pb1-ySny)I3 family of perovskite materials across the full range of achievable band gaps by substituting between 0.001% and 70% of the Pb content with Sn. We reveal that a compositional range of "defectiveness"exists when Sn comprises between 0.5% and 20% of the metal content, but that the optoelectronic quality is restored for Sn content between 30-50%. When only 1% of Pb content is replaced by Sn, we find that photoconductivity, photoluminescence lifetime, and photoluminescence quantum efficiency are reduced by at least an order of magnitude, which reveals that a small concentration of Sn incorporation produces trap sites that promote non-radiative recombination in the material and limit photovoltaic performance. While these observations suggest that band gaps between 1.35 and 1.5 eV are unlikely to be useful for optoelectronic applications without countermeasures to improve material quality, highly efficient narrower band gap absorber materials are possible at or below 1.33 eV. Through optimising single-junction photovoltaic devices with Sn compositions of 30% and 50%, we respectively demonstrate a 17.6% efficient solar cell with an ideal single-junction band gap of 1.33 eV and an 18.1% efficient low band gap device suitable for the bottom absorber in all-perovskite multi-junction cells.
More details from the publisher
Details from ORA
More details

Preventing phase segregation in mixed-halide perovskites: a perspective

Energy & Environmental Science Royal Society of Chemistry (RSC) (2020)

Authors:

Alexander J Knight, Laura M Herz

Abstract:

<p>Halide segregation represents a severe stability problem for certain mixed-halide perovskites. Here we explore a myriad of methods for mitigating halide segregation, including several largely unexplored approaches that show significant promise.</p>
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 22
  • Page 23
  • Page 24
  • Page 25
  • Current page 26
  • Page 27
  • Page 28
  • Page 29
  • Page 30
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet