Electronic traps and phase segregation in lead mixed-halide Perovskite
ACS Energy Letters American Chemical Society 4:1 (2018) 75-84
Abstract:
An understanding of the factors driving halide segregation in lead mixed-halide perovskites is required for their implementation in tandem solar cells with existing silicon technology. Here we report that the halide segregation dynamics observed in the photoluminescence from CH3NH3Pb(Br0.5I0.5)3 is strongly influenced by the atmospheric environment, and that encapsulation of films with a layer of poly(methyl methacrylate) allows for halide segregation dynamics to be fully reversible and repeatable. We further establish an empirical model directly linking the amount of halide segregation observed in the photoluminescence to the fraction of charge carriers recombining through trap-mediated channels, and the photon flux absorbed. From such quantitative analysis we show that under pulsed illumination, the frequency of the modulation alone has no influence on the segregation dynamics. Additionally, we extrapolate that working CH3NH3Pb(Br0.5I0.5)3 perovskite cells would require a reduction of the trap-related charge carrier recombination rate to ≲105s–1 in order for halide segregation to be sufficiently suppressed.How lattice dynamics moderate the electronic properties of metal-halide perovskites
Journal of Physical Chemistry Letters American Chemical Society 9:23 (2018) 6853-6863
Abstract:
Metal-halide perovskites have emerged as highly promising semiconductors with excellent optoelectronic properties. This Perspective outlines how the dynamic response of the ionic lattice affects key electronic properties such as exciton binding energies and charge-carrier mobilities in hybrid perovskites. Such links are shown to derive from the frequency-dependence of the dielectric function, which is governed by contributions from electronic interband transitions, polar vibrations of the metal-halide sublattice, organic cation collective reorientations, and ionic movement. The influence of each of these contributions to charge-carrier screening and carrier–lattice interactions is discussed, which allows for general trends with material composition to be revealed. Overall, this Perspective highlights the challenges and questions arising from the peculiar combination of a soft polar metal-halide sublattice interspersed with rotationally mobile dipolar molecules that is encountered in hybrid metal-halide perovskites.Publisher Correction: High irradiance performance of metal halide perovskites for concentrator photovoltaics
Nature Energy Springer Nature America, Inc (2018)
Abstract:
© 2018, Springer Nature Limited. When this Article was originally published, an old version of the associated Supplementary Information file was uploaded. This has now been replaced.The effects of doping density and temperature on the optoelectronic properties of formamidinium tin triiodide thin films
Advanced Materials Wiley 30:44 (2018) 1804506
Abstract:
Intrinsic and extrinsic optoelectronic properties are unraveled for formamidinium tin triiodide (FASnI3) thin films, whose background hole doping density was varied through SnF2 addition during film fabrication. Monomolecular charge-carrier recombination exhibits both a dopant-mediated part that grows linearly with hole doping density and remnant contributions that remain under tin-enriched processing conditions. At hole densities near 1020 cm-3, a strong Burstein-Moss effect increases absorption onset energies by ~300meV beyond the band gap energy of undoped FASnI3 (shown to be 1.2 eV at 5 K and 1.35 eV at room temperature). At very high doping densities (1020 cm-3), temperature-dependent measurements indicate that the effective charge-carrier mobility is suppressed through scattering with ionized dopants. Once the background hole concentration is nearer 1019 cm-3 and below, the charge-carrier mobility increases with decreasing temperature according to ~T-1.2, suggesting it is limited mostly by intrinsic interactions with lattice vibrations. For the lowest doping concentration of 7.2´1018 cm^-3, charge-carrier mobilities reach a value of 67 cm2V-1s-1at room temperature and 470 cm2V-1s-1 at 50 K. Intra-excitonic transitions observed in the THz-frequency photoconductivity spectra at 5K reveal an exciton binding energy of only 3.1 meV for FASnI3, in agreement with the low bandgap energy exhibited by this perovskite.Temperature-dependent refractive index of quartz at terahertz frequencies
Journal of Infrared, Millimeter and Terahertz Waves Springer Verlag 39:12 (2018) 1236-1248