An ultrafast carbon nanotube terahertz polarisation modulator
Journal of Applied Physics American Institute of Physics 115:20 (2014) 203108-203108
Abstract:
We demonstrate ultrafast modulation of terahertz radiation by unaligned optically pumped single-walled carbon nanotubes. Photoexcitation by an ultrafast optical pump pulse induces transient terahertz absorption in nanowires aligned parallel to the optical pump. By controlling the polarisation of the optical pump, we show that terahertz polarisation and modulation can be tuned, allowing sub-picosecond modulation of terahertz radiation. Such speeds suggest potential for semiconductor nanowire devices in terahertz communication technologies.Chromophores in molecular nanorings: when is a ring a ring?
journal of physical chemistry letters American Chemical Society 5:24 (2014) 4356-4361
Abstract:
The topology of a conjugated molecule plays a significant role in controlling both the electronic properties and the conformational manifold that the molecule may explore. Fully π-conjugated molecular nanorings are of particular interest, as their lowest electronic transition may be strongly suppressed as a result of symmetry constraints. In contrast, the simple Kasha model predicts an enhancement in the radiative rate for corresponding linear oligomers. Here we investigate such effects in linear and cyclic conjugated molecules containing between 6 and 42 butadiyne-linked porphyrin units (corresponding to 600 C-C bonds) as pure monodisperse oligomers. We demonstrate that as the diameter of the nanorings increases beyond ∼10 nm, its electronic properties tend toward those of a similarly sized linear molecule as a result of excitation localization on a subsegment of the ring. However, significant differences persist in the nature of the emitting dipole polarization even beyond this limit, arising from variations in molecular curvature and conformation.Measuring the electrical properties of semiconductor nanowires using terahertz conductivity spectroscopy
Proceedings of SPIE--the International Society for Optical Engineering SPIE, the international society for optics and photonics 8923 (2013) 892321-892321-6
Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber.
Science 342:6156 (2013) 341-344
Abstract:
Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.Optimizing the energy offset between dye and hole-transporting material in solid-state dye-sensitized solar cells
Journal of Physical Chemistry C 117:39 (2013) 19850-19858